精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知△ABC內接于⊙O,DOC的延長線上,B=CAD=30°.

(1)AD是⊙O的切線嗎?為什么?

(2)ODAB,BC=5,求⊙O的半徑.

【答案】(1)證明見解析;2⊙O的半徑為5

【解析】

試題(1)理解OA,根據圓周角定理求出∠O,求出∠OAC,即可求出∠OAD=90°,根據切線的判定推出即可.

2)求出等邊三角形OAC,求出AC,即可求出答案.

試題解析:(1AD⊙O的切線,理由如下:連接OA,

∵∠B=30°,

∴∠O=60°,

∵OA=OC,

∴∠OAC=60°,

∵∠CAD=30°,

∴∠OAD=90°,

A⊙O ,

∴AD⊙O的切線;

2∵∠OAC=∠O=60°,

∴∠OCA=60°,

∴△AOC是等邊三角形,

∵OD⊥AB,

∴OD垂直平分AB,

∴AC=BC=5,

∴OA=5,

⊙O的半徑為5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知直線(其中為常數,),取不同數值時,可得不同直線,請研究這些直線的共同特征.

實踐操作

1)當時,直線的解析式為________,請在圖1中畫出圖象.

時,直線的解析式為________,請在圖2中畫出圖象

2)探索發現:

直線必經過點(_______,_______)

3)類比遷移:

矩形如圖2所示,若直線分矩形的面積為相等的兩部分,請在圖中直接畫出這條直線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學玩摸球游戲,游戲規則如下:

先由甲同學從中隨機摸出一球,記下球號,并放回攪勻,再由乙同學從中隨機摸出一球,記下球號。將甲同學摸出的球號作為一個兩位數的十位上的數,乙同學的作為個位上的數。若該兩位數能被4整除,則甲勝,否則乙勝.

問:這個游戲公平嗎?請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】周末,小華和小亮想用所學的數學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.

已知:CBADEDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據相關測量信息,求河寬AB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙OOC與點DAD的延長線交BC于點E,過D作⊙O的切線交BC于點F.下列結論:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正確的只有____________________.(填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A是半徑為6cm的⊙O上的定點,動點PA出發,以πcm/s的速度沿圓周按順時針方向運動,當點P回到A時立即停止運動.設點P運動時間為t(s);

(1)當t=6s時,∠POA的度數是________;

(2)當t為多少時,∠POA=120°;

(3)如果點BOA延長線上的一點,且AB=AO,問t為多少時,POB為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABO的直徑,直線l經過O上一點C,過點AADl于點D,交O于點E,AC平分∠DAB

(1)求證:直線lO的切線;

(2)若DC=4,DE=2,求線段AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解:閱讀下列材料:已知二次三項式2x2+x+a有一個因式是(x+2),求另一個因式以及a 的值

解:設另一個因式是(2x+b),

根據題意,得2x2+x+a=(x+2)(2x+b),

展開,得2x2+x+a =2x2+(b+4)x+2b,

所以,解得,

所以,另一個因式是(2x3),a 的值是6.

請你仿照以上做法解答下題:已知二次三項式3x2 10x m 有一個因式是(x+4),求另一個因式以及m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD中,BD是對角線,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,則線段CD=________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视