【題目】如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.
(1)判斷直線DE與⊙O的位置關系,并說明理由.
(2)若⊙O的半徑R=5,tanA=,求線段CD的長.
【答案】(1) DE與⊙O相切; 理由見解析;(2).
【解析】
(1)連接OD,利用圓周角定理以及等腰三角形的性質得出OD⊥DE,進而得出答案;
(2)得出△BCD∽△ACB,進而利用相似三角形的性質得出CD的長.
解:(1)直線DE與⊙O相切.
理由如下:連接OD.
∵OA=OD
∴∠ODA=∠A
又∵∠BDE=∠A
∴∠ODA=∠BDE
∵AB是⊙O直徑
∴∠ADB=90°
即∠ODA+∠ODB=90°
∴∠BDE+∠ODB=90°
∴∠ODE=90°
∴OD⊥DE
∴DE與⊙O相切;
(2)∵R=5,
∴AB=10,
在Rt△ABC中
∵tanA=
∴BC=ABtanA=10×,
∴AC=,
∵∠BDC=∠ABC=90°,∠BCD=∠ACB
∴△BCD∽△ACB
∴
∴CD=.
科目:初中數學 來源: 題型:
【題目】如圖,y=ax2+bx+c的圖象經過點(﹣1,0),(m,0);有如下判斷:①abc<0;②b>3c;③=1﹣
;④|am+a|=
.其中正確的判斷有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,y=ax2+bx+c的圖象經過點(﹣1,0),(m,0);有如下判斷:①abc<0;②b>3c;③=1﹣
;④|am+a|=
.其中正確的判斷有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運動,速度為1cm/s;同時動點Q從點C出發,沿折線C→D→A運動,速度為2cm/s.當一個點到達終點時,另一個點隨之停止運動。設點P運動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.
(1)若∠A=60°,求BC的長;
(2)若sinA=,求AD的長.
(注意:本題中的計算過程和結果均保留根號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com