【題目】如圖,平面直角坐標系xOy中,一次函數y=﹣x+b(b為常數,b>0)的圖象與x軸、y軸分別交于A、B兩點,半徑為5的圓⊙O與x軸正半軸相交于點C,與y軸相交于D、E兩點.
(1)若直線AB交劣弧 于P、Q兩點(異于C、D)
①當P點坐標為(3,4)時,求b值;
②求∠CPE的度數,并用含b的代數式表示弦PQ的長(寫出b的取值范圍);
(2)當b=6時,線段AB上存在幾個點F,使∠CFE=45°?請說明理由.
【答案】
(1)
解:①∵點P(3,4)在直線AB上,
∴﹣3+b=4,
∴b=7,②∵∠COE=90°,
∴∠CPE= ∠COE=45°,
如圖1,過點O作OM⊥AB于M,連接OP,
∵直線AB的解析式為y=﹣x+b①,
∴直線OM的解析式為y=x②,
聯立①②解得點M( b,
b),
∴OM2= b2,
在Rt△POM中,OP=5,根據勾股定理得,PM= =
,
∴PQ=2PM=
,
當點P和點D重合時,b=5
當OM=5時,b=﹣5 (舍)或b=5
,
∴5≤b<5 ,
即:PQ=
(5≤b<5
)
(2)
解:當b=6時,線段AB上存在2個點F,使∠CFE=45°,
理由:由(1)②知,點F在劣弧 上時,∠CFE=45°,
由(1)②知,OM=5時,即:b=5 時,直線AB與⊙O相切,
當點B與點D重合時,b=5,
∴當b=6時,在5到5 之間,
∴線段AB與⊙Q有兩個交點,
即:當b=6時,線段AB上存在2個點F,使∠CFE=45°.
【解析】(1)①直接將點P的坐標代入直線y=﹣x+b中,即可求出b的值,②先求出直線OM的解析式,即可得出點M的坐標,進而得出OM,再用勾股定理即可得出PM,即可得出PQ;(2)先判斷出點F是劣弧 上時,∠CFE=45°,進而判斷b=6是線段AB與⊙O的交點的個數即可得出結論.
科目:初中數學 來源: 題型:
【題目】(1)我市開展了“尋找雷鋒足跡”的活動,某中學為了了解七年級800名學生在“學雷鋒活動月”中做好事的情況,隨機調查了七年級50名學生在一個月內做好事的次數,并將所得數據繪制成統計圖,請根據圖中提供的信息解答下列問題: ①所調查的七年級50名學生在這個月內做好事次數的平均數是 , 眾數是 , 極差是 :
②根據樣本數據,估計該校七年級800名學生在“學雷鋒活動月”中做好事不少于4次的人數.
【答案】解:①平均數;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;
眾數:5次;
極差:6﹣2=4;
②做好事不少于4次的人數:800× =624;
(1)甲口袋有2個相同的小球,它們分別寫有數字1和2;乙口袋中裝有3個相同的小球,它們分別寫有數字3、4和5,從這兩個口袋中各隨機地取出1個小球. ①用“樹狀圖法”或“列表法”表示所有可能出現的結果;
②取出的兩個小球上所寫數字之和是偶數的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規律的是( 。
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,Rt△ABC中,∠ACB=90°,D為AB中點,DE、DF分別交AC于E,交BC于F,且DE⊥DF.
(1)如果CA=CB,求證:AE2+BF2=EF2;
(2)如圖2,如果CA<CB,(1)中結論還能成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題為真命題的是
A.有兩邊及一角對應相等的兩個三角形全等
B.方程x2+2x+3=0有兩個不相等的實數根
C.面積之比為1∶2的兩個相似三角形的周長之比是1∶4
D.順次連接任意四邊形各邊中點得到的四邊形是平行四邊形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜邊AB的垂直平分線交AC于點D,點F在AC上,點E在BC的延長線上,CE=CF,連接BF,DE.線段DE和BF在數量和位置上有什么關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,正方形ABCD中,點O是對角線AC的中點,點P是線段AO上(不與A、O重合)的一個動點,過點P作PE⊥PB且交邊CD于點E.
(1)求證:PB=PE;
(2)過點E作EF⊥AC于點F,如圖2,若正方形ABCD的邊長為2,則在點P運動的過程中,PF的長度是否發生變化?若不變,請直接寫出這個不變的值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com