【題目】如圖,在平面直角坐標系中,直線l:y= 交x軸于點A,交y軸于點B,點A1、A2、A3,…在x軸上,點B1、B2、B3,…在直線l上.若△OB1A,△A1B2A2,△A2B3A3,…均為等邊三角形,則△A5B6A6的面積是__.
【答案】768.
【解析】
首先求得點A與B的坐標,即可求得∠OAB的度數,又由△OA1B1、△A1B2A2、△A2B3A3…均為等邊三角形,易求得OB1=OA=,A1B1=A1A,A2B2=A2A,則可得規律:OAn=(2n﹣1)
.根據A5A6=OA6﹣OA5求得△A5B6A6的邊長,進而求得
∵點A(﹣,0),點B(0,1),∴OA=
,OB=1,∴tan∠OAB=
=
,∴∠OAB=30°.
∵△OA1B1、△A1B2A2、△A2B3A3…均為等邊三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠A1B2A=∠A2B3A=∠OAB=30°,∴OB1=OA=,A1B2=A1A,A2B3=A2A,∴OA1=OB1=
,OA2=OA1+A1A2=OA1+A1B2=
+2
=3
,同理:OA3=7
,OA4=15
,OA5=31
,OA6=63
,則A5A6=OA6﹣OA5=32
.
則△A5B6A6的面積是768.
故答案為:768.
科目:初中數學 來源: 題型:
【題目】(如圖1,等邊△ABC中,D是AB邊上的點,以CD為一邊,向上作等邊△EDC,連接AE.
(1)求證:△DBC≌△EAC;
(2)求證:AE∥BC;
(3)如圖2, 若D在邊BA的延長線上,且AB=6,AD=2,試求△ABC與△EAC面積的比值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F為線段AD的中點,連接CF
(1)如圖1,當D點在BC上時,求證:①BE=2CF,②BE⊥CF.
(2)如圖2,把△DEC繞C點順時針旋轉一個銳角,其他條件不變,問(1)中的關系是否仍然成立?如果成立請證明.如果不成立,請寫出相應的正確的結論并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,△ABC是直角三角形,∠ACB=90°,點B、C都在第一象限內,CA⊥x軸,垂足為點A,反比例函數y1= 的圖象經過點B;反比例函數y2=
的圖象經過點C(
,m).
(1)求點B的坐標;
(2)△ABC的內切圓⊙M與BC,CA,AB分別相切于D,E,F,求圓心M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一個三角形的兩條邊長分別是1cm和2cm,一個內角為40度.
(1)請你借助圖1畫出一個滿足題設條件的三角形;
(2)你是否還能畫出既滿足題設條件,又與(1)中所畫的三角形不全等的三角形?若能,請你在圖1的右邊用“尺規作圖”作出所有這樣的三角形;若不能,請說明理由;
(3)如果將題設條件改為“三角形的兩條邊長分別是3cm和4cm,一個內角為40°”,那么滿足這一條件,且彼此不全等的三角形共有幾個.
友情提醒:請在你畫的圖中標出已知角的度數和已知邊的長度,“尺規作圖”不要求寫作法,但要保留作圖痕跡.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學校現有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c的圖象如圖所示,給出以下四個結論:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正確結論有 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com