【題目】如圖,△ABC中,∠C=90,AB=10cm,AC=8cm,點P從點A開始出發向點C以2cm/s的速度移動,點Q從B點出發向點C以1cm/s的速度移動,若P、Q分別同時從A,B出發,幾秒后四邊形APQB是△ABC面積的
科目:初中數學 來源: 題型:
【題目】如圖,學校準備在教學樓后面搭建一個簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為19 m),另外三邊利用學,F有總長38 m的鐵欄圍成.
(1)若圍成的面積為180 m2,試求出自行車車棚的長和寬;
(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請你給出設計方,如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料
我們通過下列步驟估計方程2x2+x﹣2=0的根的所在的范圍.
第一步:畫出函數y=2x2+x﹣2的圖象,發現圖象是一條連續不斷的曲線,且與x軸的一個
交點的橫坐標在0,1之間.
第二步:因為當x=0時,y=﹣2<0;當x=1時,y=1>0.
所以可確定方程2x2+x﹣2=0的一個根x1所在的范圍是0<x1<1.
第三步:通過取0和1的平均數縮小x1所在的范圍;
取x=,因為當x=
時,y<0,
又因為當x=1時,y>0,
所以<x1<1.
(1)請仿照第二步,通過運算,驗證2x2+x﹣2=0的另一個根x2所在范圍是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基礎上,重復應用第三步中取平均數的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若二次函數y=ax2+bx+c(a≠0)的圖象于x軸的交點坐標分別為(x1,0),(x2,0),且x1<x2,圖象上有一點M(x0,y0)在x軸下方,對于以下說法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區決定把一塊長,寬
的矩形空地建成居民健身廣場,設計方案如圖,陰影區域為綠化區(四塊綠化區為大小、形狀都相同的矩形),空白區域為活動區,且四周的4個出口寬度相同,其寬度不小于
,不大于
,設綠化區較長邊為
,活動區的面積為
.為了想知道出口寬度的取值范圍,小明同學根據出口寬度不小于
,算出
.
(1)求與
的函數關系式并直接寫出自變量
的取值范圍;
(2)求活動區的最大面積;
(3)預計活動區造價為50元/,綠化區造價為40元/
,若社區的此項建造投資費用不得超過72000元,求投資費用最少時活動區的出口寬度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,點F在BC上,連DF與AB的延長線交于點G.
(1)求證:△CDF∽△BGF;
(2)當點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=6cm,EF=4cm,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎上,進一步證明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,2×2網格(每個小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個格點.拋物線l的解析式為(n為整數).若l經過這九個格點中的三個,則滿足這樣條件的拋物線條數為_________條
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com