【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF= .
【答案】
【解析】解:∵正方形ABCD,
∴AB=AD=BC=2 ,AD∥BC,
∴∠AEB=∠EBF,
∵E為AD邊的中點,
∴AE= ,
由折疊的性質得∠AEB=∠BEF,EA′=AE= ,∠BA′E=∠A=90°,A′B=AB=2
,
∴∠BEF=∠EBF,
∴BF=EF,
設CF=x,則BF=2 +x,A′F=
+x,
在Rt△A′BF中,(2 )2+(
+x)2=(2
+x)2 ,
解得:x= ,
所以答案是 .
【考點精析】關于本題考查的翻折變換(折疊問題),需要了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖,已知A是雙曲線y= (x>0)上一點,過點A作AB∥x軸,交雙曲線y=﹣
(x<0)于點B,若OA⊥OB,則
的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在圖(1)中,D是BC邊上的中點,判斷DE+DF和BG的關系,并說明理由.
(2)在圖(2)中,D是線段BC上的任意一點,DE+DF和BG的關系是否仍然成立?如果成立,證明你的結論;如果不成立,請說明理由.
(3)在圖(3)中,D是線段BC延長線上的點,探究DE、DF與BG的關系.(不要求證明,直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數,下列說法錯誤的是( )
A.函數有最小值
B.當﹣1<x<3時,y>0
C.當x<1時,y隨x的增大而減小
D.對稱軸是直線x=1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x與x軸交于點O,A,頂點為B,連接AB并延長,交y軸于點C,則圖中陰影部分的面積和為( )
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀思考
我們知道,在數軸上|a|表示數a所對應的點到原點的距離,這是絕對值的幾何意義,由此我們可進一步地來研究數軸上任意兩個點之間的距離,一般地,如果數軸上兩點A、B 對立的數用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數的減去左邊的點所表示的數來計算,例如:數軸上P,Q兩點表示的數分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.
啟發應用
如圖,點A在數軸上對應的數為a,點B對應的數為b,且a、b滿足|a+3|+(b﹣2)2=0
(1)求線段AB的長;
(2)如圖,點C在數軸上對應的數為x,且x是方程2x+1=x﹣8的解,
①求線段BC的長;
②在數軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應的數:若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】著名的瑞士數學家歐拉曾指出:可以表示為四個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為四個整數平方之和,即
,這就是著名的歐拉恒等式,有人稱這樣的數為“不變心的數”.實際上,上述結論可減弱為:可以表示為兩個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為兩個整數平方之和.
【動手一試】
試將改成兩個整數平方之和的形式.
;
【閱讀思考】
在數學思想中,有種解題技巧稱之為“無中生有”.例如問題:將代數式改成兩個平方之差的形式.解:原式
﹒
【解決問題】
請你靈活運用利用上述思想來解決“不變心的數”問題:將代數式改成兩個整數平方之和的形式(其中a、b、c、d均為整數),并給出詳細的推導過程﹒
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,延長CB到點M,使BM=1,連接AM,過點B作BN⊥AM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為數軸的原點,A,B為數軸上的兩點,點A表示的數為-30,點B表示的數為100.
(1)A,B兩點間的距離是________.
(2)若點C也是數軸上的點,點C到點B的距離是點C到原點O的距離的3倍,求點C表示的數.
(3)若電子螞蟻P從點B出發,以6個單位長度/s的速度向左運動,同時另一只電子螞蟻Q恰好從點A出發,以4個單位長度/s的速度向左運動,設兩只電子螞蟻同時運動到了數軸上的點D,那么點D表示的數是多少?
(4)若電子螞蟻P從點B出發,以8個單位長度/s的速度向右運動,同時另一只電子螞蟻Q恰好從點A出發,以4個單位長度/s的速度向右運動.設數軸上的點N到原點O的距離等于點P到原點O的距離的一半(點N在原點右側),有下面兩個結論:①ON+AQ的值不變;②ON-AQ的值不變,請判斷哪個結論正確,并求出正確結論的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com