精英家教網 > 初中數學 > 題目詳情

【題目】如圖①,在銳角△ABC中,D,E分別為AB,BC中點,F為AC上一點,且∠AFE=∠A,DM∥EF交AC于點M.

(1)求證:DM=DA;
(2)點G在BE上,且∠BDG=∠C,如圖②,求證:△DEG∽△ECF;
(3)在圖②中,取CE上一點H,使∠CFH=∠B,若BG=1,求EH的長.

【答案】
(1)

證明:如圖1所示,

∵DM∥EF,

∴∠AMD=∠AFE,

∵∠AFE=∠A,

∴∠AMD=∠A,

∴DM=DA;


(2)

證明:如圖2所示,

∵D、E分別是AB、BC的中點,

∴DE∥AC,

∴∠BDE=∠A,∠DEG=∠C,

∵∠AFE=∠A,

∴∠BDE=∠AFE,

∴∠BDG+∠GDE=∠C+∠FEC,

∵∠BDG=∠C,

∴∠DGE=∠FEC,

∴△DEG∽△ECF;


(3)

解:如圖3所示,

∵∠BDG=∠C=∠DEB,∠B=∠B,

∴△BDG∽△BED,

,

∴BD2=BGBE,

∵∠AFE=∠A,∠CFH=∠B,

∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=EFH,

又∵∠FEH=∠CEF,

∴△EFH∽△ECF,

,

∴EF2=EHEC,

∵DE∥AC,DM∥EF,

∴四邊形DEFM是平行四邊形,

∴EF=DM=DA=BD,

∴BGBE=EHEC,

∵BE=EC,

∴EH=BG=1.


【解析】(1)證明∠A=∠DMA,用等角對等邊即可證明結論;
(2)由D、E分別是AB、BC的中點,可知DE∥AC,于是∠BDE=∠A,∠DEG=∠C,又∠A=∠AFE,∠AFE=∠C+∠FEC,根據等式性質得∠FEC=∠GDE,根據有兩對對應角相等的兩三角形相似可證;
(3)通過證明△BDG∽△BED和△EFH∽△ECF,可得BGBE=EHEC,又BE=EC,所以EH=BG=1.
此題考查了相似三角形的判定與性質.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點E,F分別是邊AB,AC的中點,點D在邊BC上.若DE=DF,AD=2,BC=6,求四邊形AEDF的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2.則 cos∠MCN=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在9×9的正方形網格中,△ABC三個頂點在格點上,每個小正方形的邊長為1.

(1)建立適當的平面直角坐標系后,若點A的坐標為(1,1),點C的坐標為(4,2),畫出平面直角坐標系并寫出點B的坐標;

(2)直線l經過點A且與y軸平行,寫出點B、C關于直線l對稱點B1、C1的坐標;

(3)直接寫出BC上一點P(a,b)關于直線l對稱點P1的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一次初中生田徑運動會上,根據參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統計圖①和圖②,請根據相關信息,解答下列問題:
(1)①中a的值為;
(2)統計的這組初賽成績數據的平均數、眾數和中位數(結果保留小數點后兩位);
(3)據這組初賽成績,由高到低確定7人進入復賽,請直接寫出初賽成績為1.60m的運動員能否進入復賽.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點,P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q

(1)這條拋物線的對稱軸是 ,直線PQ與x軸所夾銳角的度數是 .
(2)若兩個三角形面積滿足S△POQ=S△PAQ , 求m的值
(3)當點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求:①PD+DQ的最大值;②PDDQ的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:

(1)接受問卷調查的學生共有 人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為 ;
(2)請補全條形統計圖;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數;
(4)若從對校園安全知識達到了“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C為線段AB上一點,點DBC的中點,且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的邊AB是⊙O的直徑,點C在⊙O上,已知AC=6cm,BC=8cm,點P、Q分別在邊AB、BC上,且點P不與點A、B重合,BQ=kAP(k>0),聯接PC、PQ.
(1)求⊙O的半徑長;
(2)當k=2時,設AP=x,△CPQ的面積為y,求y關于x的函數關系式,并寫出定義域;
(3)如果△CPQ與△ABC相似,且∠ACB=∠CPQ,求k的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视