【題目】探究函數的圖象與性質.
(1)下表是y與x的幾組對應值.
… | … | ||||||||
… | … |
其中m的值為_______________;
(2)根據上表數據,在如圖所示的平面直角坐標系中描點,并已畫出了函數圖象的一部分,請你畫出該圖象的另一部分;
(3)結合函數的圖象,寫出該函數的一條性質:_____________________________;
(4)若關于x的方程有2個實數根,則t的取值范圍是___________________.
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形紙片 ABCD 中,∠B=∠D=90°,點 E,F 分別在邊 BC,CD 上,將 AB,AD 分別沿 AE,AF 折疊,點 B,D 恰好都和點 G 重合,∠EAF=45°.
(1)求證:四邊形 ABCD 是正方形;
(2)若 EC=FC=1,求 AB 的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).
(1)求此拋物線的表達式;
(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=( )
A、 B、
C、
D、
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據有關部門的規定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數)
(參考數據:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,
≈1.73,
≈2.24)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O 中,AB、CD是互相垂直的兩條直徑,點E在上,CF⊥AE 于點F,若點F四等分弦AE,且AE=8,則⊙O 的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,點P是等邊△ABC內一點,已知PA=3,PB=4,PC=5,求∠APB的度數.
要直接求∠A的度數顯然很因難,注意到條件中的三邊長恰好是一組勾股數,因此考慮借助旋轉把這三邊集中到一個三角形內,如圖2,作∠PAD=60°使AD=AP,連接PD,CD,則△PAD是等邊三角形.
∴ =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等邊三角形
∴AC=AB,∠BAC=60°
∴∠BAP=
∴△ABP≌△ACD
∴BP=CD=4, =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如圖3,在△ABC中,AB=BC,∠ABC=90°,點P是△ABC內一點,PA=1,PB=2,PC=3,求∠APB的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com