Ӣҽ̾W > ДW > }ĿԔ

҇WA_f^?֑vP??Ӡ΢?^ٰã?ּʞݔWǃɂҪо֮gʮе“ϵһl֮g໥D໥B͸

νYϵĻ˼о}^УעєνYÆ}ľwшD|Ć}D锵PϵĆ}߰єPϵĆ}DD|Ć}ʹs}λ}wy@úеijɹ

1234nֵn

@͆}üķβ^ӣ}mȻԽQ^茦nżMӑՓ

ÔνYϵķÈDε|fPϵŒǾͷdzֱ^FÈDε|1234n ֵ£Dб߅ΈDϵÿηքe123nСAȦнMɵģMСAȦĂǡʽ1234nֵʽӵֵF߅εб߅cԭνMһƽ߅Σ˕rMƽ߅εСAȦnÿУn1СAȦԽMƽ߅СAȦĿnn1MһСAȦĂ1234n

(1νYϵ˼뷽OӋPD13572n1ֵ n Ҫ󣺮DÈDҪf

(2ԇOӋһND13572n1ֵnҪ󣺮DÈDҪf

𰸣
ϵд
P}

ĿДW Դ x

x}҇WA_f^ȱΕrֱ^Сry΢νYϰٰxּfݣνYϵĻ˼о}^עєνYÆ}ľwшD|Ć}D锵PϵĆ}DD|Ć}ʹs}λ}wy@úеijɹ
1+2+3+4++nֵn
ÔνYϵķFÈDε|1+2+3+4++nֵ£
Dб߅ΈDϵÿηքe123nСAȦĂǡÞʽ1+2+3+4++nֵʽӵֵF߅εб߅cԭνMһƽ߅СAȦĿnn+1MһСAȦĂ
n(n+1)
2
1+2+3+4++n=
n(n+1)
2

ٷνYϵ˼뷽OӋPD1+3+5+7++2n-1ֵnҪ󮋳DYɣ
ԇOӋһND1+3+5+7++2n-1ֵnҪ󮋳DYɣ
Ӣҽ̾W

鿴𰸺ͽ>>

ĿДW Դ x

҇WA_f^ȱΕrֱ^ٔry΢νYϰٰxּfݡWǃɂҪо֮gʮе“ϵһl£֮g໥D໥B͸
νYϵĻ˼о}^עєνY죬Æ}ľwшD|Ć}D锵PϵĆ}߰єPϵĆ}DD|Ć}ʹs}λ}wyף@úеijɹ
磺1+2+3+4++nֵn
@͆}üķβ^ӣ}mȻԽQ^茦nżMӑՓ
ÔνYϵķÈDε|fPϵŒǾͷdzֱ^FÈDε|1+2+3+4++nֵ£Dб߅ΈDϵÿηքe123nСAȦнMɵģMСAȦĂǡʽ1+2+3+4++nֵʽӵֵF߅εб߅cԭνMһƽ߅Σ˕rMƽ߅εСAȦnÿУn+1СAȦԽMƽ߅СAȦĿnn+1MһСAȦĂ
n(n+1)
2
1+2+3+4++n=
n(n+1)
2

1νYϵ˼뷽OӋPD1+3+5+7++2n-1ֵnҪ󣺮DÈDҪf
2ԇOӋһND1+3+5+7++2n-1ֵnҪ󣺮DΣӢҽ̾WÈDҪf

鿴𰸺ͽ>>

ĿДW Դ

҇WA_f^@һԒνYϰٰѷּfݡ
ˆDһ߅L1μNe
1
2

1
4

1
8

1
16

1
210
СLμƬՈ㌑Ӣҽ̾WδNֵeı_ʽ
 

鿴𰸺ͽ>>

ĿДW Դ

҇WA_f^νYϰٰãѷּf·ǣDһ߅L1μϣNe
1
2

1
4

1
8
1
2n
ľβɫƬn1
ՈáνYϡ˼׃ҎӋ
1
2
+
1
4
+
1
8
++
1
2n
=
1-
1
2n
1-
1
2n

鿴𰸺ͽ>>

ĿДW Դ

һλ˷dzϲgÿкӵ͕r˶Ҫóǹдһӣ˾ͽoһKɂӣ˾ͽoÿӃɉKǡ
1һaкȥ˼һo@Щa2K
2ڶbŮȥ˼һo@Щb2K
3@a+bһȥ˼һo@Щӣa+b2
@ЩӵõǹcǰõǹĂ࣬Ăʲô^˼֪aкÿ˶bKbŮÿ˶aK˶ab+ab=2abKУa+b2=a2+b2+2ab
҇WA_f^ȱΕrֱ^ٔry΢νYϰٰxּfݡһl֮g໥D໥B͸
wνY˼ăȺԇOӋһND΁fa+b2=a2+b2+2abҪ󣺮DÈDҪf

鿴𰸺ͽ>>

ͬԴ
久久精品免费一区二区视