精英家教網 > 初中數學 > 題目詳情

【題目】如圖,圓O通過五邊形OABCD的四個頂點.若弧ABD=150°,∠A=65°,∠D=60°,則弧BC的度數為何?( 。

A. 25 B. 40 C. 50 D. 55

【答案】B

【解析】

連接OBOC,由半徑相等得到三角形OAB,三角形OBC,三角形OCD都為等腰三角形,根據∠A=65°,D=60°,求出∠1與∠2的度數,根據 的度數確定出∠AOD度數,進而求出∠3的度數,即可確定出 的度數.

連接OB、OC,

OAOBOCOD

∴△OAB、OBCOCD,皆為等腰三角形,

∵∠A=65°,D=60°,

∴∠1=180°﹣2A=180°﹣2×65°=50°,2=180°﹣2D=180°﹣2×60°=60°,

=150°,

∴∠AOD=150°,

∴∠3=AOD1﹣2=150°﹣50°﹣60°=40°,

的度數為40°.

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知有一塊等腰三角形紙板,在它的兩腰上各有一點EF,把這兩點分別與底邊中點連結,并沿著這兩條線段剪下兩個三角形,所得的這兩個三角形相似,剩余部分(四邊形)的四條邊的長度如圖所示,那么原等腰三角形的底邊長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平行四邊形ABCD中,O為對角線BD的中點,EF經過點O分別交AD、BCE、F兩點,

1)如圖1,求證:AECF;

2)如圖2,若EFBD,∠AEB60°,請你直接寫出與DEDE除外)相等的所有線段.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,AOBC的頂點A、B、C在⊙O上,點D、E分別在BO、AO的延長線上,且OD=2OB,OE=2OA,連接DE.

(1)求∠AOB的度數;

(2)求證:DE是⊙O的切線;

(3)如圖2,設直線DE與⊙O相切于點F,連接AD、BF,判斷線段ADBF的位置關系和數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,正比例函數yx的圖象與反比例函數yk0)的圖象交于點A(﹣2,﹣2),其中將直線OA向上平移3個單位后與y軸交于點C,與反比例函數在第三象限內交點為B(﹣4,m).

1)求該反比例函數的解析式與平移后的直線解析式;

2)求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A、B兩點的坐標分別為A(0,2),B(2,0),直線AB與反比例函數y=的圖象相交于點C和點D,將△OBC繞點O逆時針方向旋轉θ角(θ為銳角),得到△OB′C′,當θ=_____時,OC′⊥AB;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P為反比例函數y=的圖像上一點,PAx軸于點A,PAO的面積為6,則下列各點中也在這個反比例函數圖像上的是( )

A. (2,3) B. (﹣2,6) C. (2,6) D. (﹣2,3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2017遼寧省盤錦市,第18題,3分)如圖,點A1(1,1)在直線y=x上,過點A1分別作y軸、x軸的平行線交直線于點B1,B2,過點B2y軸的平行線交直線y=x于點A2,過點A2x軸的平行線交直線于點B3,…,按照此規律進行下去,則點An的橫坐標為______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视