【題目】如圖,在中,
,分別以
的邊向外作正方形,連接EC、BF,過B作
于M,交AC于N,下列結論:
≌
;
;
;
,其中正確的是
A.B.
C.
D.
【答案】D
【解析】
利用全等三角形的判定和性質、平行線的性質、等高模型即可一一判斷;
連接BE,AM.
∵AB=AE,AF=AC,∠EAB=∠CAF,
∴∠BAF=∠EAC,
∴△BAF≌△EAC(SAS),故①正確,
∵AE∥CD,
∴S△AEC=S△ABE,
∵S正方形ABDE=2S△ABE,
∴S四邊形ABDE=2S△AEC;故②正確;
∵BM⊥FG,AF⊥FG,
∴AF∥BM,
∴S矩形AFMN=2S△AFM=2S△AFB,故③正確,
∵∠ABC=∠ANB=90°,∠BAN=∠BAC,
∴△ABN∽△ACB,
∴AB2=ANAC,
∵AF=AC,
∴AB2=ANAF,
∴S正方形ABDE=S四邊形AFMN,故④正確,
故選:D.
科目:初中數學 來源: 題型:
【題目】某年級共有150名女生,為了解該年級女生實心球成績(單位:米)和一分鐘仰臥起坐成績(單位:個)的情況,從中隨機抽取30名女生進行測試,獲得了他們的相關成績,并對數據進行整理、描述和分析.下面給出了部分信息.
a. 實心球成績的頻數分布表如下:
分組 | ||||||
頻數 | 2 | m | 10 | 6 | 2 | 1 |
b. 實心球成績在這一組的是:
a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3
c. 一分鐘仰臥起坐成績如下圖所示:
根據以上信息,回答下列問題:
(1) ①表中m的值為__________;
②一分鐘仰臥起坐成績的中位數為__________;
(2)若實心球成績達到7.2米及以上時,成績記為優秀.
①請估計全年級女生實心球成績達到優秀的人數;
②該年級某班體育委員將本班在這次抽樣測試中被抽取的8名女生的兩項成績的數據抄錄如下:
女生代碼 | A | B | C | D | E | F | G | H |
實心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分鐘仰臥起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有3名女生的一分鐘仰臥起坐成績未抄錄完整,但老師說這8名女生中恰好有4人兩項測試成績都達到了優秀,于是體育委員推測女生E的一分鐘仰臥起坐成績達到了優秀,你同意體育委員的說法嗎?并說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了參加“荊州市中小學生首屆詩詞大會”,某校八年級的兩班學生進行了預選,其中班上前5名學生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數據分析,列表如下:
班級 | 平均分 | 中位數 | 眾數 | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據以上數據分析,你認為哪個班前5名同學的成績較好?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y=ax2+bx+c(其中a,b,c為常數,且a≠0),樂老師在用描點法畫其的圖象時,列出如下表格,根據該表格,下列判斷中不正確的是( 。
x | … | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣2 | 2.5 | 4 | 2.5 | … |
A. a<0
B. 一元二次方程ax2+bx+c﹣5=0沒有實數根
C. 當x=3時y=﹣2
D. 一元二次方程ax2+bx+c=0有一根比3大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋中有完全相同的三個小球,把它們分別標號為1,2,3. 小林和小華做一個游戲,按照以下方式抽取小球:先從布袋中隨機抽取一個小球,記下標號后放回布袋中攪勻,再從布袋中隨機抽取一個小球, 記下標號. 若兩次抽取的小球標號之和為奇數,小林贏;若標號之和為偶數,則小華贏.
(1)用畫樹狀圖或列表的方法,列出前后兩次取出小球上所標數字的所有可能情況;
(2)請判斷這個游戲是否公平,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司生產的一種產品按照質量由高到低分為A,B,C,D四級,為了增加產量、提高質量,該公司改進了一次生產工藝,使得生產總量增加了一倍.為了解新生產工藝的效果,對改進生產工藝前、后的四級產品的占比情況進行了統計,繪制了如下扇形圖:
根據以上信息,下列推斷合理的是( 。
A.改進生產工藝后,A級產品的數量沒有變化
B.改進生產工藝后,B級產品的數量增加了不到一倍
C.改進生產工藝后,C級產品的數量減少
D.改進生產工藝后,D級產品的數量減少
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某部門為新的生產線研發了一款機器人,為了了解它的操作技能情況,在相同條件下與人工操作進行了抽樣對比.過程如下,請補充完整.
收集數據對同一個生產動作,機器人和人工各操作20次,測試成績(十分制)如下:
機器人 | 8.0 | 8.1 | 8.1 | 8.1 | 8.2 | 8.2 | 8.3 | 8.4 | 8.4 | 9.0 |
9.0 | 9.0 | 9.1 | 9.1 | 9.4 | 9.5 | 9.5 | 9.5 | 9.5 | 9.6 | |
人工 | 6.1 | 6.2 | 6.6 | 7.2 | 7.2 | 7.5 | 8.0 | 8.2 | 8.3 | 8.5 |
9.1 | 9.6 | 9.8 | 9.9 | 9.9 | 9.9 | 10 | 10 | 10 | 10 |
整理、描述數據按如下分段整理、描述這兩組樣本數據:
成績x 人數 生產方式 | 6≤x<7 | 7≤x<8 | 8≤x<9 | 9≤x≤10 |
機器人 | 0 | 0 | 9 | 11 |
人工 |
|
|
|
(說明:成績在9.0分及以上為操作技能優秀,8.0~8.9分為操作技能良好,6.0~7.9分為操作技能合格,6.0分以下為操作技能不合格)
分析數據兩組樣本數據的平均數、中位數、眾數和方差如下表所示:
平均數 | 中位數 | 眾數 | 方差 | |
機器人 | 8.8 | 9.0 | 9.5 | 0.333 |
人工 | 8.6 | 8.8 | 10 | 1.868 |
得出結論
(1)如果生產出一個產品,需要完成同樣的操作200次,估計機器人生產這個產品達到操作技能優秀的次數為 ;
(2)請結合數據分析機器人和人工在操作技能方面各自的優勢: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩所醫院分別有一男一女共4名醫護人員支援湖北武漢抗擊疫情.
(1)若從甲、乙兩醫院支援的醫護人員中分別隨機選1名,則所選的2名醫護人員性別相同的概率是 ;
(2)若從支援的4名醫護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫護人員來自同一所醫院的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x﹣2與雙曲線y=(k≠0)相交于A,B兩點,且點A的橫坐標是3.
(1)求k的值;
(2)過點P(0,n)作直線,使直線與x軸平行,直線與直線y=x﹣2交于點M,與雙曲線y= (k≠0)交于點N,若點M在N右邊,求n的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com