【題目】在下列解題過程的空白處填上適當的內容(推理的理由或數學表達式)如圖,∠1+∠2=180°,∠3=∠4.
求證:EF∥GH
證明:∵∠1+∠2=180°(已知),
∠AEG=∠1(對頂角相等)
∴ ,
∴AB∥CD( ),
∴∠AEG=∠ ( )
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠ (等式性質),
∴EF∥GH.
【答案】∠AEG+∠2=180°;同旁內角互補,兩直線平行;EGD,兩直線平行,內錯角相等;EGD.
【解析】
求出∠AEG+∠2=180°,根據平行線的判定得出AB∥CD,根據平行線的性質得出∠AEG=∠EGD,求出∠3+∠AEG=∠4+∠EGD,根據平行線的判定得出即可.
證明:
∵∠1+∠2=180°(已知),
∠AEG=∠1(對頂角相等)
∴∠AEG+∠2=180°,
∴AB∥CD(同旁內角互補,兩直線平行),
∴∠AEG=∠EGD(兩直線平行,內錯角相等),
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠EGD(等式性質),
∴EF∥GH,
故答案為:∠AEG+∠2=180°,同旁內角互補,兩直線平行,EGD,兩直線平行,內錯角相等,EGD.
科目:初中數學 來源: 題型:
【題目】一次函數y=ax+b和反比例函數y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數y=ax2+bx+c的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CA=CB,M,N分別AB上的兩動點,且∠MCN=45°,下列結論:①;②CM2﹣CN2=NBNA﹣MBMA;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,數軸上標出若干個點,每相鄰兩點相距一個單位長度,點A,B,C,D對應的數分別是數a,b,c,d,且d-2a=10,那么數軸的原點應是( )
A.點A
B.點B
C.點C
D.點D
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在數軸上有兩點A、B,回答下列問題
(1)寫出A、B兩點所表示的數,并求線段AB的長;
(2)將點A向左移動個單位長度得到點C,點C表示的數是多少,并在數軸上表示出來
(3)數軸上存在一點D,使得C、D兩點間的距離為8,請寫出D點表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】雅安地震發生后,全國人民抗震救災,眾志成城,值地震發生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運往災區,現有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)全部物資可用甲型車8輛,乙型車5輛,丙型車 輛來運送.
(2)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(3)為了節省運費,該地政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數為14輛,你能分別求出三種車型的輛數嗎?此時的運費又是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,△ABC的角平分線BD,CE相交于點P.
(1)如果∠A=80,求∠BPC= .
(2)如圖②,過點P作直線MN∥BC,分別交AB和AC于點M和N,試求∠MPB+∠NPC的度數(用含∠A的代數式表示) .
(3)將直線MN繞點P旋轉。
(i)當直線MN與AB,AC的交點仍分別在線段AB和AC上時,如圖③,試探索∠MPB,∠NPC,∠A三者之間的數量關系,并說明你的理由。
(ii)當直線MN與AB的交點仍在線段AB上,而與AC的交點在AC的延長線上時,如圖④,試問(i)中∠MPB,∠NPC,∠A三者之間的數量關系是否仍然成立?若成立,請說明你的理由;若不成立,請給出∠MPB,∠NPC,∠A三者之間的數量關系,并說明你的理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)圖1陰影面積可表示為_______,圖2陰影面積可表示為_____.
請利用圖形面積的不同表示方法,寫出一個關于、
的恒等式_______.
(2)如圖所示的長方形或正方形三類卡片各有若干張,請你用這些卡片,拼成一個長方形或正方形圖形。驗證公式(a+b)2=a2+2ab+b2.
(3)圖是一個長為2m、寬為2m的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖
的形狀拼成一個正方形。
請用兩種不同的方法求圖中陰影部分的面積:
方法1:___________________;
方法2:__________________;
觀察圖寫出下列三個代數式之間的等量關系:
,
,
_____________________________;
(4)根據(3)題中的等量關系,解決如下問題:
若,
,則
________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com