【題目】如圖,在△ABC中,AB =AC=2,∠B = 40°,點D在線段BC上運動(不與點B,C重合),連接AD,作∠ADE = 40°,DE交線段AC于點E.
(1)當∠BDA = 115°時,∠BAD= °,∠DEC = °,當點D從點B向點C運動時,∠BDA逐漸變 (填“大”或“小”) .
(2)當DC等于多少時,△ABD≌△DCE?請說明理由.
(3)在點D的運動過程中,是否存在△ADE是等腰三角形?若存在,請直接寫出此時∠BDA的度數;若不存在,請說明理由.
【答案】(1)25,115,;(2)當DC=2時,△ABD ≌△DCE,理由見解析;(3)存在.∠BDA=110°或80°.
【解析】試題分析:
(1)根據三角形的內角和計算∠BAD,再由三角形的一個外等于和它不相鄰的兩個內角的和求∠EDC,從而可得∠DEC,根據三角形的內角和判斷∠BDA的大小變化.
(2)在(1)中可得到這兩個三角形的三個角都相等,只要有一條邊對應相等即可,而已知AB=2,所以CD=2.
(3)假設等腰△ADE存在,因為底邊不確定,所以需要分三種情況討論,求出∠BDA的度數后要檢驗.
試題解析:
(1)∠BAD=180°-∠B-∠BDA=180°-40°-115°=25°.
∵∠ADC=∠B+∠BAD,∴40°+∠EDC=40°+∠BAD,∴∠EDC=∠BAD.
∴∠DEC=180°-∠C-∠EDC=180°-40°-25°=115°.
∵在點D從點B向點C運動的過程中,對于△ABD,∠B=40°不變,∠BAD逐漸變大,
∴∠ADB逐漸變小.
(2)當DC=2時,△ABD≌△DCE,理由如下:
在△ABD和△DCE中,
因為∠B=∠C,∠BAD=∠CDE,已經有了兩個角分別相等,所以只需要一邊對應相等即可.
AB=AC=2,當DC=AB時,則可用ASA證明這兩個三角形全等.
(3)在點D的運動過程中,存在△ADE是等腰三角形。理由如下:
①當DA=DE時,∠DAE=(180°-∠ADE)÷2=(180°-40°)÷2=70°.
所以∠BDA=∠C+∠DAE=40°+70°=110°.
②當AD=AE時,∠DAE=180°-2×40°=100°,
所以∠BDA=∠C+∠DAE=40°+100°=140°,
但∠BDA=180°-∠B-∠BAD=180°-40°-∠BAD,所以∠BDA<140°,
所以AD=AE不存在.
③當EA=ED時,∠DAE=∠EDA=40°,
所以∠BDA=∠DAE+∠C=40°+40°=80°.
綜上所述,∠BDA=110°或80°.
科目:初中數學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結果,繪制成如下的圖表.
組別 | 正常字數x | 人數 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據以上信息完成下列問題:
(1)統計表中的m= ,n= ,并補全條形統計圖;
(2)扇形統計圖中“C組”所對應的圓心角的度數是 ;
(3)已知該校共有900名學生,如果聽寫正確的字的個數少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了降低塑料袋﹣﹣“白色污染”對環境污染.學校組織了對使用購物袋的情況的調查,小明同學5月8日到站前市場對部分購物者進行了調查,據了解該市場按塑料購物袋的承重能力分別提供了0.1元,0.2元,0.3元三種質量不同的塑料袋,下面兩幅圖是這次調查得到的不完整的統計圖(若每人每次只使用一個購物袋),請你根據圖中的信息,回答下列問題:
(1)這次調查的購物者總人數是 人;
(2)請補全條形統計圖,并說明扇形統計圖中0.2元部分所對應的圓心角是 度,0.3元部分所對應的圓心角是 度;
(3)若5月8日到該市場購物的人數有3000人次,則該市場應銷售塑料購物袋多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們把使得函數值為零的自變量的值稱為函數的零點. 例如,對于函數y=-x+1,令y=0,可得x=1,我們就說x=1是函數y=-x+1的零點.己知函數y=x2-2(m+1)x-2(m+2)
(m為常數) .(1)當m=-1時,求該函數的零點;
(2)證明:無論m取何值,該函數總有兩個零點;
(3)設函數的兩個零點分別為和
,且
,求此時的函數解析式,并判斷點(n+2,n2-10)是否在此函數的圖象上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為(-3,2),(-1,3),(2,1).
(1)作出與△ABC關于x軸對稱的△A1B1C1(點A,B,C的對應點分別是A1,B1,C1);
(2)連接AA1,CC1,求出四邊形AA1 C1C的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與x軸、y軸分別相交于A、B兩點,且與反比例函數y=(k≠o)的圖象在第一象限交于點C,如果點B的坐標為(0,2).OA=OB,B是線段AC的中點.
(l)求點A的坐標及一次函數解析式;
(2)求點C的坐標及反比例函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列長度的三線段,能組成等腰三角形的是 ( )
A. 1cm 1cm 2cm B. 2cm 2 cm 5 cm
C. 3cm 3cm 5cm D. 3cm 4cm 5cm
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com