【題目】便民”水泥代銷點銷售某種水泥,每噸進價為250元,如果每噸銷售價定為290元時,平均每天可售出16噸.
(1)若代銷點采取降低促銷的方式,試建立每噸的銷售利潤y(元)與每噸降低x(元)之間的函數關系式;
(2)若每噸售價每降低5元,則平均每天能多售出4噸,問:每噸水泥的實際售價定為多少元時,每天的銷售利潤平均可達720元.
【答案】(1)y=40-x;(2)每噸水泥的實際售價應定為280元時,每天的銷售利潤平均可達720元.
【解析】
(1)未采取降低促銷方式前每噸水泥的利潤為290-250=40元,代銷點采取降低促銷的方式后每噸水泥的利潤為(40-x)元;
(2)先求出降價后每天售出水泥的噸數,再乘以每天的利潤正好等于720元,解方程即可求出降低的價錢,從而求得每噸水泥的實際售價.
解:(1)依題意得y=290-x-250=40-x;
(2)設每噸水泥降低x元,依題意得
(40-x)(16+x)=720,
解得x1=x2=10,
∴290-10=280.
答:每噸水泥的實際售價應定為280元時,每天的銷售利潤平均可達720元.
科目:初中數學 來源: 題型:
【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規實施后,某校數學課外實踐小組對這些交通法規的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統計圖和扇形統計圖.
請結合圖中所給信息解答下列問題:
(1)本次共調查 名學生;扇形統計圖中C所對應扇形的圓心角度數是 ;
(2)補全條形統計圖;
(3)學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區交通法規競賽,請用列表或畫樹狀圖的方法求丙和丁兩名學生同時被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點,
,過點
作直線
,
(1)若,點
是線段
的中點,點
在射線
上,當
是邊長為5的等腰三角形,共有幾個這樣的點
,并嘗試求出點
的坐標;
(2)若直線與
不平行,
在直線
上,是否存在點
,使得
是直角三角形,且
,若存在,求出這樣的點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E,F分別是AD,BC的中點,G,H分別是BD,AC的中點,AB,CD滿足( )條件時,四邊形EGFH是菱形.
A.AB=CDB.AB//CDC.AB⊥CDD.AB=CD AB//CD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2經過點A(﹣1,0)和點B(4,0),且與y軸交于點C,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點,連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當△PDB的面積等于△CAD的面積時,求點P的坐標;
(3)當m>0,n>0時,過點P作直線PE⊥y軸于點E交直線BC于點F,過點F作FG⊥x軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)已知∠BAO=25°,點Q是弧AmB上的一點.
①求∠AQB的度數;
②若OA=18,求弧AmB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com