【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE= BF.
【答案】
(1)證明:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
,
∴Rt△DFB≌Rt△DAC(AAS),
∴BF=AC
(2)證明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中,
,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE= AC,
又∵BF=AC,
∴CE= BF
【解析】(1)根據三角形的內角和定理求出∠A=∠DFB,推出BD=DC,根據AAS證出△BDF≌△CDA即可;(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根據ASA證出△AEB≌△CEB,推出AE=CE即可.
科目:初中數學 來源: 題型:
【題目】黃麻中學為了創建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格多5元,已知學校用12000元購買的科普類圖書的本數與用5000元購買的文學類圖書的本數相等,求學校購買的科普類圖書和文學類圖書平均每本的價格各是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點,若CF=1,FD=2,則BC的長為( )
A.3
B.2
C.2
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )
A.4
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(﹣2,1),B(1,4),若反比例函數y= 與線段AB有公共點時,k的取值范圍是( )
A.﹣2≤k≤4
B.k≤﹣2或k≥4
C.﹣2≤k<0或k≥4
D.﹣2≤k<0或0<k≤4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司生產一種新型節能電水壺并加以銷售,現準備在甲城市和乙城市兩個不同地方按不同銷售方案進行銷售,以便開拓市場. 若只在甲城市銷售,銷售價格為y(元/件)、月銷量為x(件),y是x的一次函數,如表,
月銷量x(件) | 1500 | 2000 |
銷售價格y(元/件) | 185 | 180 |
成本為50元/件,無論銷售多少,每月還需支出廣告費72500元,設月利潤為W甲(元)
(利潤=銷售額﹣成本﹣廣告費).
若只在乙城市銷售,銷售價格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數,40≤a≤70),當月銷量為x(件)時,每月還需繳納 x2元的附加費,設月利潤為W乙(元)(利潤=銷售額﹣成本﹣附加費).
(1)當x=1000時,y甲=元/件,w甲=元;
(2)分別求出W甲 , W乙與x間的函數關系式(不必寫x的取值范圍);
(3)當x為何值時,在甲城市銷售的月利潤最大?若在乙城市銷售月利潤的最大值與在甲城市銷售月利潤的最大值相同,求a的值;
(4)如果某月要將5000件產品全部銷售完,請你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤較大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E是AD上一點,延長CE到點F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規在AD上作出一點P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知經過原點的拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣1,下列結論中:
①ab>0,②a+b+c>0,③當﹣2<x<0時,y<0.
正確的個數是( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com