精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,已知點A2,3),點B﹣2,1),在x軸上存在點PA,B兩點的距離之和最小,則P點的坐標是

【答案】﹣10).

【解析】

試題作A關于x軸的對稱點C,連接BCx軸于P,則此時AP+BP最小,求出C的坐標,設直線BC的解析式是y=kx+b,把B、C的坐標代入求出k、b,得出直線BC的解析式,求出直線與x軸的交點坐標即可.

試題解析: A關于x軸的對稱點C,連接BCx軸于P,則此時AP+BP最小,

∵A點的坐標為(2,3),B點的坐標為(﹣21),

∴C2,﹣3),

設直線BC的解析式是:y=kx+b,

B、C的坐標代入得:

解得

即直線BC的解析式是y=﹣x﹣1

y=0時,﹣x﹣﹣1=0,

解得:x=﹣1,

∴P點的坐標是(﹣1,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).

(1)圖2中的陰影部分的面積為  

(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關系是 ;

(3)根據(2)中的結論,若x+y=7,xy=,則x﹣y=  ;

(4)實際上通過計算圖形的面積可以探求相應的等式.根據圖3,寫出一個因式分解的等式 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
①以O為位似中心在第二象限作位似比為1:2變換,得到對應的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標;
②以原點O為旋轉中心,畫出把△ABC順時針旋轉90°的圖形△A2B2C2 , 并寫出C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某劇院的觀眾席的座位為扇形,且按下列分式設置:

排數(x

1

2

3

4

座位數(y

50

53

56

59

(1)按照上表所示的規律,當x每增加1時,y如何變化?

(2)寫出座位數y與排數x之間的關系式;

(3)按照上表所示的規律,某一排可能有90個座位嗎?說說你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等邊△ABC外側作直線AP,點B關于直線AP的對稱點為D,連結BD,CD,其中CD交直線AP與點E

1)如圖1,若∠PAB30°,則∠ACE   ;

2)如圖2,若60°<∠PAB120°,請補全圖形,判斷由線段AB,CE,ED可以構成一個含有多少度角的三角形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設點B的橫坐標為x,設點C的縱坐標為y,能表示y與x的函數關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE

1)如圖1,若∠COF=34°,則∠BOE=______;

2)如圖1,若∠BOE=80°,則∠COF=______;

3)若∠COF=m°,則∠BOE=______度;∠BOE與∠COF的數量關系為______

4)當∠COE繞點O逆時針旋轉到如圖2的位置時,(3)中∠BOE與∠COF的數量關系是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示的圖形中,所有四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形邊長為7cm,設正方形A、B、C、D、E、F面積分別為SA、SB、SC、SD、SE、SF,則下列各式正確有()個.

① SA+SB+SC+SD=49;② SE+SF=49;③ SA+SB+SF=49;④ SC+SD+SE=4

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBC,ECD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點EMEAFBC于點M,連接AM、BD交于點N,現有下列結論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视