精英家教網 > 初中數學 > 題目詳情

【題目】如圖,用四條線段首尾相接連成一個框架,其中AB=12,BC=14,CD=18,DA=24,則A、B、C、D任意兩點之間的最長距離為(
A.24cm
B.26cm
C.32cm
D.36cm

【答案】C
【解析】解:已知AB=12,BC=14,CD=18,DA=24; ①選12+14、18、24作為三角形,則三邊長26、18、24;26﹣24<18<26+24,能構成三角形,此時兩個端點間的最長距離為26;
②選12、14+18、24作為三角形,則三邊長為12、32、24;32﹣24<12<32+24,能構成三角形,此時兩個端點間的最大距離為32;
③選12、14、18+24作為三角形,則三邊長為12、14、42;12<42﹣14,不能構成三角形.
故選:C.
【考點精析】認真審題,首先需要了解三角形三邊關系(三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某藥品研究所開發一種抗菌新藥,經多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數關系如圖所示(當4≤x≤10時,y與x成反比例).

(1)根據圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數關系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續時間多少小時?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的,連接BE、CF相交于點D.

(1)求證:BE=CF;
(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從O點出發,沿OM的方向以1cm/s的速度運動,當D不與點A重合時,將△ACD繞點C逆時針方向旋轉60°得到△BCE,連結DE.

(1)求證:△CDE是等邊三角形;
(2)如圖2,當6<t<10時,△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當點D在射線OM上運動時,是否存在以D、E、B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA=AB,∠OAB=90°,反比例函數y= (x>0)的圖象經過A,B兩點.若點A的坐標為(n,1),則k的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC的中點,AE∥BC,DE∥AB.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣ x+6分別與x軸、y軸交于A、B兩點,直線y= x與AB交于點C,與過點A且平行于y軸的直線交于點D,點E從點A出發,以每秒1個單位的速度沿x軸向左運動,過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為ts(t>0).

(1)求點C的坐標;
(2)當0<t<5時,求S的最大值;
(3)當t在何范圍時,點(4, )被正方形PQMN覆蓋?請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC=BD=6,E、F、G、H分別是AB、BC、CD、DA的中點,則EG2+FH2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年是襄陽“創建文明城市”工作的第二年,為了更好地做好“創建文明城市”工作,市教育局相關部門對某中學學生“創文”的知曉率,采取隨機抽樣的方法進行問卷調查,調查結果分為“非常了解”,“比校了解”,“基本了解”,和“不了解”四個等級.小輝根據調查結果繪制了如圖所示的統計圖,請根據提供的信息回答問題:
(1)本次調查中,樣本容量是;
(2)扇形統計圖中“基本了解”部分所對應的圓心角的度數是;在該校2000名學生中隨機提問一名學生,對“創文”不了解的概率估計值為
(3)請補全頻數分布直方圖.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视