精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠C90°,AC6cm,BC8cm,點P從點A出發沿AC1cm/s的速度向點C移動,同時點QC點出發沿CB2cm/s的速度向點B移動.當Q運動到B點時,P,Q停止運動,設點P運動的時間為ts

1t為何值時,△PCQ的面積等于5cm2?

2)點PQ在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半?若存在,求出t的值;若不存在,說明理由.

【答案】11;(2)不存在,理由見解析.

【解析】

1)分別求出CPCQ的表達式,再根據面積等于5列出方程,解方程即可得出答案;

2)根據題意求出ABC的面積,再根據PCQ的面積等于ABC的面積的一半列出一元二次方程,利用判別式判斷是否有實數解,即可得出答案.

解:(1)由題意得,APtcm CQ2tcm,則PC=(6tcm

×2t6t)=5

整理,得t26t+50,解得t11,t25(舍).

t=1時,PCQ的面積等于5cm2;

2)由題意得:SABC×ACBC×6×824

即:×2t6t)=×24,

整理的:t26t+120

624×12=﹣120,該方程無實數解,

∴不存在某一時刻,使得PCQ的面積等于ABC的面積的一半.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一個不透明的袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.

(1)從袋中隨機摸出一個球,記錄其顏色,然后放回.大量重復該實驗,發現摸到綠球的頻率穩定于0.25,n的值;

(2)在該不透明袋子中同時摸出兩個球,求摸出的兩個球顏色不同的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某汽車租賃公司共有汽車50輛,市場調查表明,當租金為每輛每日200元時可全部租出,當租金每提高10元,租出去的車就減少2輛.

1)當租金提高多少元時,公司的每日收益可達到10120元?

2)公司領導希望日收益達到10200元,你認為能否實現?若能,求出此時的租金,若不能,請說明理由.

3)汽車日常維護要一定費用,已知外租車輛每日維護費為100元,未租出的車輛維護費為50元,當租金為多少元時,公司的利潤恰好為5500元?(利潤=收益一維護費).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線的對稱軸為,且經過點A2,1),點是拋物線上的動點,的橫坐標為,過點軸,垂足為,于點,點關于直線的對稱點為,連接,,過點AAEx軸,垂足為E.則當 )時,的周長最小.

A.1B.1.5C.2D.2.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O的半徑為1,ABC是⊙O的內接等邊三角形,點D,E在圓上,四邊形BCDE為矩形,這個矩形的面積是(

A. 2 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市新建了圓形文化廣場,小杰和小浩準備不同的方法測量該廣場的半徑.

1)小杰先找圓心,再量半徑,請你在圖1中,用尺規作圖的方法幫小杰找到該廣場的圓心(不寫作法,保留作圖痕跡);

2)小浩在廣場邊(如圖2)選取、三根石柱,量得、之間的距離與之間的距離相等,并測得長為240米,的距離為5米.請你幫他求出廣場的半徑;

3)請你解決下面的問題:如圖3,的直徑為,弦是弦上的一個動點,求出的長度范圍是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,.

1)經過A、BC三點的圓弧所在圓的圓心M的坐標為________.

2)點D坐標為,連接CD,判斷直線CD與⊙M的位置關系并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一只不透明的袋子中,裝有2個白球,1個紅球,1個黃球,這些球除顏色外都相同.請用列表法或畫樹形圖法求下列事件的概率:

(1)攪勻后從中任意摸出1個球,恰好是白球.

(2)攪勻后從中任意摸出2個球,2個都是白球.

(3)再放入幾個除顏色外都相同的黑球,攪勻后從中任意摸出1個球,恰好是黑球的概率為,求放入了幾個黑球?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视