精英家教網 > 初中數學 > 題目詳情

(1)觀察發現如題(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。 做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P 再如題(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小. 做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為       .  

(2)實踐運用
如題(c)圖,已知⊙O的直徑CD為4,弧AD所對圓心角的度數為60°,點B是弧AD的中點,請你在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸
如題(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法. 

(1)(1)首先由等邊三角形的性質知,CE⊥AB,在直角△BCE中,∠BEC=90°BC=2,BE=1,由勾股定理可求出CE的長度,從而得出結果,BP+PE的最小值為

(2)如上圖作點B關于CD的對稱點E,則點E正好在圓周上,連接AE交CD與一點P,則AP+BP最短。連接OA、OB、OE,
∵∠AOD=60°,B是弧AD的中點,∴∠AOB=∠DOB=30°,
∵B關于CD的對稱點E,∴∠DOE=∠DOB=30°,∴∠AOE=90°,
又∵OA=OE=2,∴△OAE為等腰直角三角形,∴AE=.
(3)找B關于AC對稱點E,連DE延長交AC于P即可,如下圖分

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

 

1.觀察發現

    如題27(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。 做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P

  再如題27(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。

如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這

點就是所求的點P,故BP+PE的最小值為       

2.實踐運用

如題27(c)圖,已知⊙O的直徑CD為4,弧AD所對圓心角的度數為60°,點B是弧AD的中點,請你在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如題27(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留

作圖痕跡,不必寫出作法.

 

查看答案和解析>>

科目:初中數學 來源: 題型:

觀察發現

    如題26(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。

    做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P

    再如題26(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。

    做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這

  點就是所求的點P,故BP+PE的最小值為        .  

         

題26(a)圖                    題26(b)圖               

(2)實踐運用

    如題26(c)圖,已知⊙O的直徑CD為4,AD的度數為60°,點B是的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.

      

題26(c)圖                       題26(d)圖

 (3)拓展延伸

    如題26(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留

作圖痕跡,不必寫出作法.

 

查看答案和解析>>

科目:初中數學 來源: 題型:

觀察發現
如題26(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如題26(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這
點就是所求的點P,故BP+PE的最小值為       .  
         
題26(a)圖                    題26(b)圖               
(2)實踐運用
如題26(c)圖,已知⊙O的直徑CD為4,AD的度數為60°,點B是的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.
      
題26(c)圖                       題26(d)圖
(3)拓展延伸
如題26(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年江西省南昌市九年級下學期第二次聯考數學試卷(解析版) 題型:解答題

 

1.觀察發現

    如題27(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。 做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P

   再如題27(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.

如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這

點就是所求的點P,故BP+PE的最小值為       

2.實踐運用

如題27(c)圖,已知⊙O的直徑CD為4,弧AD所對圓心角的度數為60°,點B是弧AD的中點,請你在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如題27(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留

作圖痕跡,不必寫出作法.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视