【題目】已知:如圖,已知直線AB的函數解析式為y=﹣2x+8,與x軸交于點A,與y軸交于點B.
(1)求A、B兩點的坐標;
(2)若點P(m,n)為線段AB上的一個動點(與A、B不重合),作PE⊥x軸于點E,PF⊥y軸于點F,連接EF,問:
①若△PAO的面積為S,求S關于m的函數關系式,并寫出m的取值范圍;
②是否存在點P,使EF的值最?若存在,求出EF的最小值;若不存在,請說明理由.
【答案】(1)A(4,0),B(0,8);(2)S =﹣4m+16,(0<m<4);(3),理由見解析
【解析】試題分析:(1)根據坐標軸上點的特點直接求值,
(2)①由點在直線AB上,找出m與n的關系,再用三角形的面積公式求解即可;
②判斷出EF最小時,點P的位置,根據三角形的面積公式直接求解即可.
試題解析:
(1)令x=0,則y=8,
∴B(0,8),
令y=0,則﹣2x+8=0,
∴x=4,
∴A(4,0),
(2)∵點P(m,n)為線段AB上的一個動點,
∴﹣2m+8=n,∵A(4,0),
∴OA=4,
∴0<m<4
∴S△PAO=OA×PE=
×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);
(3)存在,理由如下:
∵PE⊥x軸于點E,PF⊥y軸于點F,OA⊥OB,
∴四邊形OEPF是矩形,
∴EF=OP,
當OP⊥AB時,此時EF最小,
∵A(4,0),B(0,8),
∴AB=4,
∵S△AOB=OA×OB=
AB×OP,
∴OP= ,
∴EF最小=OP=.
科目:初中數學 來源: 題型:
【題目】某水電站興建了一個最大蓄水容量為12萬米3的蓄水池,并配有2個流量相同的進水口和1個出水口.某天從0時至12時,進行機組試運行.其中,0時至2時打開2個進水口進水;2時,關閉1個進水口減緩進水速度,至蓄水池中水量達到最大蓄水容量后,隨即關閉另一個進水口,并打開出水口,直至12時蓄水池中的水放完為止.
若這3個水口的水流都是勻速的,且2個進水口的水流速度一樣,水池中的蓄水量 y(萬米3)與時間t(時)之間的關系如圖所示,請根據圖象解決下列問題:
(1)蓄水池中原有蓄水 萬米3,蓄水池達最大蓄水量12萬米3的時間a的值為 ;
(2)求線段BC、CD所表示的y與t之間的函數關系式;
(3)蓄水池中蓄水量維持在m萬米3以上(含m萬米3)的時間有3小時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一元一次方程ax-b=0的解是x=3,則函數y=ax-b的圖象與x軸的交點坐標是( )
A.(-3,0)
B.(3,0)
C.(a,0)
D.(-b,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法:
①兩負數比較大小,絕對值大的反而;
②數軸上,在原點左邊離原點越近的數越;
③所有的有理數都可以用數軸上的點表示;
④倒數等于它本身的數是1或0;
⑤兩數相加,和一定大于任何一個加數.
其中正確的有( 。
A.①④
B.②③④
C.①③
D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有下列圖形,①三角形,②長方形,③平行四邊形,④立方體,⑤圓錐,⑥圓柱,⑦圓,⑧球體,其中是平面圖形的個數為( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com