【題目】閱讀下面的材料:小錘遇到一個問題:如圖①,在△ABC中,DE//BC分別交AB于點D,交AC于點E,已知CDBE,CD=2,BE=3,求BC+DE的值.
小錘發現,過點E作EFDC,交BC的延長線于點F,構造△BEF,經過推理和計算能夠使問題得到解決.
(1)請按照上述思路完成小錘遇到的問題;
(2)參考小錘思考問題的方法,解決下面的問題:如圖②,四邊形ABCD是平行四邊形,四邊形ABEF是矩形,AC與DF交于點G,AC=BF=DF,求∠DGC的度數.
【答案】(1)BC+DE=;(2)60°.
【解析】
(1)由DE∥BC,EF∥DC,可證得四邊形DCFE是平行四邊形,即可得EF=CD=3,CF=DE,即可得BC+DE=BF,然后利用勾股定理,求得BC+DE的值;
(2)首先連接AE,CE,由四邊形ABCD是平行四邊形,四邊形ABEF是矩形,易證得四邊形DCEF是平行四邊形,繼而證得△ACE是等邊三角形,則可求得答案.
(1)∵DE∥BC,EF∥DC,
∴四邊形DCFE是平行四邊形,
∴EF=CD=3,CF=DE,
∵CD⊥BE,
∴EF⊥BE,
∴BC+DE=BC+CF=BF=BE2+EF2=;
(2)連接AE,CE,如圖.
∵四邊形ABCD是平行四邊形,
∴AB∥DC.
∵四邊形ABEF是矩形,
∴AB∥FE,BF=AE.
∴DC∥FE.
∴四邊形DCEF是平行四邊形.
∴CE∥DF.
∵AC=BF=DF,
∴AC=AE=CE.
∴△ACE是等邊三角形.
∴∠ACE=60°.
∵CE∥DF,
∴∠AGF=∠ACE=60°.
科目:初中數學 來源: 題型:
【題目】如圖 1,C為線段 AB上一點,以 AC,BC為一邊,在 AB同側做長方形 ACDE和長方形 CBFG,且 滿足 AC=2AE,CB=2BF,記 AC2a,BC2b(a b) .
(1)記長方形 ACDE的面積為 s1 ,長方形 CBFG的面積為 s2 .若 AB6, a2b ,求 s1 s2 .
(2)如圖 2,點 P是線段 CA上的動點.
①當點 P從點 C向左移動個單位后,求△EAP與△FBP的面積之差.
②當點 P從點 C向左移動 個單位后,△EAP與△FBP的面積之差記為 m1 ; 當點 P從點 C向左移動 (a b) 個單位后,△EAP與△FBP的面積之差記為 m2 ,求
的值(結果用含 n 的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市推出電腦上網包月制,每月收取費用y(元)與上網時間x(小時)的函數關系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)若小李11月份上網20小時,他應付多少元的上網費用?
(2)當x≥30,求y與x之間的函數關系式;
(3)若小李12月份上網費用為135元,則他在該月份的上網時間是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F,若AB=6,BC=4,則FD=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩張寬度均為4的矩形紙片按如圖所示方式放置:
(1)如圖1,求證:四邊形ABCD是菱形;
(2)如圖2,點P在BC上,PFAD于點F,若
=16
, PC=1.
①求∠BAD的度數;②求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E、F是正方形ABCD的邊AD上的兩個動點,滿足AE=DF.連接CF交BD于G,連接BE交AG于H.已知正方形ABCD的邊長為4cm,解決下列問題:
(1)求證:BE⊥AG;
(2)求線段DH的長度的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com