【題目】疫情之下,中華兒女共抗時艱.重慶和湖北同飲長江水,為更好地馳援武漢,打贏防疫攻堅戰,我市某公益組織收集社會捐獻物資.甲、乙兩人先后從地沿相同路線出發徒步前往
地進行物資捐獻,甲出發1分鐘后乙再出發,一段時間后乙追上甲,這時甲發現有東西落在
地,于是原路原速返回
地去。兹|西的時間忽略不計),而乙繼續前行,甲乙兩人到達B地后原地幫忙.已知在整個過程中,甲乙均保持各自的速度勻速行走,甲、乙兩人相距的路程
(米)與甲出發的時間
(分鐘)之間的函數關系如圖所示,則當乙到達
地時,甲距
地的路程是_______米.
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點F,CE⊥AE,垂足為點E,EG⊥CD,垂足為點G,點H在邊BC上,BH=DF,連接AH、FH,FH與AC交于點M.下面結論:①FH=2BH;②AC⊥FH;③DF=1;④ EG2=FGDG.其中正確的個數為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l:y=分別交x軸、y軸于點A和點A1,過點A1作A1B1⊥l,交x軸于點B1,過點B1作B1A2⊥x軸,交直線l于點A2;過點A2作A2B2⊥l,交x軸于點B2,過點B2作B2A3⊥x軸,交直線l于點A3;依此規律...若圖中陰影△A1OB1的面積為S1,陰影△A2B1B2的面積S2,陰影△A3B2B3的面積S3...,則Sn=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸交于
,
兩點,與
軸交于點
,點
是拋物線的頂點.
(1)求拋物線的解析式;
(2)點是
軸正半軸上的一點,
,點
在對稱軸左側的拋物線上運動,直線
交拋物線的對稱軸于點
,連接
,當
平分
時,求點
的坐標;
(3)直線交對稱軸于點
,
是坐標平面內一點,當
與
全等時,請直接寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】植樹節來臨之際,學校準備購進一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.
(1)求一棵甲種樹苗和一棵乙種樹苗的售價各是多少元?
(2)學校準備購進這兩種樹苗共100棵,并且乙種樹苗的數量不多于甲種樹苗數量的2倍,請設計出最省錢的購買方案,并求出此時的總費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在初中階段的函數學習中,我們經歷了“確定函數的表達式——利用函數圖象研究其性質——應用函數解決問題”的學習過程.在畫函數圖象時,我們可以通過描點或平移的方法畫出一個函數的大致圖象,結合上面經歷的學習過程,現在來解決下面問題:
在函數中,當
時,
;當
時,
.
(1)求這個函數的表達式;
(2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數的圖象,并寫出這個函數的一條性質;
(3)已知函數的圖象如圖所示,結合你所畫的函數圖象,直接寫出不等式
的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】水產公司有一種海產品共2104千克,為尋求合適的銷售價格,進行了8天試銷,試銷情況如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | 第8天 | |
售價 | 400 | 300 | 250 | 240 | 200 | 150 | 125 | 120 |
銷售量 | 30 | 40 | 48 | 50 | 60 | 80 | 96 | 100 |
觀察表中數據,發現可以用反比例函數刻畫這種海產品每天的銷售量(千克)與銷售價格
(元/千克)之間的關系.現假定在這批海產品的銷售中,每天的銷售量
(千克)與銷售價格
(元/千克)之間都滿足這一關系.
(1)寫出這個反比例函數的解析式;
(2)在試銷8天后,公司決定將這種海產品的銷售價格定為150元/千克,并且每天都按這個價格銷售,那么余下的這些海產品預計再用多少天可以全部售出?
(3)在按(2)中定價繼續銷售15天后,公司發現剩余的這些海產品必須在不超過2天內全部售出,此時需要重新確定一個銷售價格,使后面兩天都按新的價格銷售,那么新確定的價格最高不超過每千克多少元才能完成銷售任務?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB經過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E,D,連接EC,CD.
(1)求證:直線AB是⊙O的切線;
(2)試猜想BC,BD,BE三者之間的等量關系,并加以證明;
(3)若tan∠CED=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com