【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)以直線BC為軸,把△ABC旋轉一周,求所得圓錐的底面圓周長.
(2)以直線AC為軸,把△ABC旋轉一周,求所得圓錐的側面積;
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動,△ADE繞點A旋轉,連接BE,CD,F為BE的中點,連接AF.
(1)如圖①,當∠BAE=90°時,求證:CD=2AF;
(2)當∠BAE≠90°時,(1)的結論是否成立?請結合圖②說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F,且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點F,C是⊙O上兩點,連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過點C作CD⊥AF交AF的延長線于點D,垂足為點D.
(1)求扇形OBC的面積(結果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖, 在中,
,
,
,P是邊BC上的一動點,過點P作PE⊥AB,垂足為E,延長PE至點Q,使PQ=PC, 聯結
交邊AB于點
.
(1)求AD的長;
(2)設,
的面積為y, 求y關于x的函數解析式,并寫出定義域;
(3)過點C作, 垂足為F, 聯結PF、QF, 試探索當點P在邊BC的什么位置時,
為等邊三角形?請指出點P的位置并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,
,
,AB=4,點
是邊
上動點(點
不與點
、
重合),過點
作
,交
邊于點
.
(1)求的大;
(2)若把沿著直線
翻折得到
,設
① 如圖2,當點落在斜邊
上時,求
的值;
② 如圖3,當點落在
外部時,
與
相交于點
,如果
,寫出
與
的函數關系式以及定義域.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線
與
軸相交于
,
兩點,與
軸交于點
,
為頂點.
求直線
的解析式和頂點
的坐標;
已知
,點
是直線
下方的拋物線上一動點,作
于點
,當
最大時,有一條長為
的線段
(點
在點
的左側)在直線
上移動,首尾順次連接
、
、
、
構成四邊形
,請求出四邊形
的周長最小時點
的坐標;
如圖
,過點
作
軸交直線
于點
,連接
,
點是線段
上一動點,將
沿直線
折疊至
,是否存在點
使得
與
重疊部分的圖形是直角三角形?若存在,請求出
的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com