【題目】周末,小明乘坐家門口的公交車到和平公園游玩,他先乘坐公交車0.8小時后達到書城,逗留一段時間后繼續坐公交車到和平公園,小明出發一段時間后,小明的媽媽不放心,于是駕車沿相同的路線前往和平公園,如圖是他們離家的路程與離家時間
的關系圖,請根據圖回答下列問題:
(1)小明家到和平公園的路程為 ,他在書城逗留的時間為
;
(2)圖中點表示的意義是 ;
(3)求小明的媽媽駕車的平均速度(平均速度=).
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC.
(1)(觀察猜想)當點E在AB的中點時,如圖1,過點E作EF∥BC,交AC于點F,觀察猜想得到線段AE與DB的大小關系是 ;
(2)(探究證明)當點E不是AB的中點時,如圖2,上述結論是否成立,如果成立,請寫出解答過程,如果不成立,請說明理由;
(3)(拓展延伸)在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC,若△ABC的邊長為2,AE=1,求CD的長(請直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線y=x2+bx+c經過點(2,-3)和(4,5).
(1)求拋物線的表達式及頂點坐標;
(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達式;
(3)在(2)的條件下,當-2<x<2時,直線y=m與該圖象有一個公共點,求m的值或取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y= 與y軸交于點A,與直線y=﹣
交于點B,以AB為邊向右作菱形ABCD,點C恰與原點O重合,拋物線y=(x﹣h)2+k的頂點在直線y=﹣
上移動.若拋物線與菱形的邊AB、BC都有公共點,則h的取值范圍是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結論:
①E為AB的中點;
②FC=4DF;
③S△ECF= ;
④當CE⊥BD時,△DFN是等腰三角形.
其中一定正確的是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點A、B、C在坐標軸上,且A、B、C的坐標分別為、
、
過點A的直線AD與y軸正半軸交于點D,
求直線AD和BC的解析式;
如圖2,點E在直線
上且在直線BC上方,當
的面積為6時,求E點坐標;
在
的條件下,如圖3,動點M在直線AD上,動點N在x軸上,連接ME、NE、MN,當
周長最小時,求
周長的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,同底數冪的乘法法則為:am·an=am+n(其中a≠0,m,n為正整數),類似地我們規定關于任意正整數m,n的一種新運算:h(m+n)=h(m)·h(n),請根據這種新運算填空:
(1)若h(1)=,則h(2)=________;
(2)若h(1)=k(k≠0),則h(n)·h(2017)=________(用含n和k的代數式表示,其中n為正整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,FD之間的數量關系并證明. (提示:延長CD到G,使得DG=BE)
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由;
(3)如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西20°的A處,艦艇乙在指揮中心南偏東60°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進.1小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.(可利用(2)的結論)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com