精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數式表示S.
(1)y=﹣x2+2x+3
(2)(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3
(3)當0<m≤時,S=﹣m2+3m;當<m<3時,S=m2﹣3m+

試題分析:(1)根據對稱軸x=1、與x軸的一個交點為A(3,0)、與y軸的交點為B(0,3)可得關于a、b、c的方程組,解出即可
(2)分①MA=M;②AB=AM;③AB=BM三種情況討論可得點M的坐標.
(3)記平移后的三角形為△PEF.由待定系數法可得直線AB的解析式為y=﹣x+3.易得直線EF的解析式為y=﹣x+3+m.根據待定系數法可得直線AC的解析式.連結BE,直線BE交AC于G,則G(,3).在△AOB沿x軸向右平移的過程中.分二種情況:①當0<m≤時;②當<m<3時;討論可得用m的代數式表示S.
試題解析:(1)由題意可知,,解得,經檢驗均為方程組的解,
故拋物線的解析式為y=﹣x2+2x+3.
(2)①當MA=MB時,M(0,0);
②當AB=AM時,M(0,﹣3);
③當AB=BM時,M(0,3+3)或M(0,3﹣3).
所以點M的坐標為:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).
(3)平移后的三角形記為△PEF.
設直線AB的解析式為y=kx+b,則

解得
則直線AB的解析式為y=﹣x+3.
△AOB沿x軸向右平移m個單位長度(0<m<3)得到△PEF,
易得直線EF的解析式為y=﹣x+3+m.
設直線AC的解析式為y=k′x+b′,則
,
解得
則直線AC的解析式為y=﹣2x+6.
連結BE,直線BE交AC于G,則G(,3).
在△AOB沿x軸向右平移的過程中.
①當0<m≤時,如圖1所示.

設PE交AB于K,EF交AC于M.
則BE=EK=m,PK=PA=3﹣m,
聯立,
解得
即點M(3﹣m,2m).
故S=S△PEF﹣S△PAK﹣S△AFM
=PE2PK2AF•h
=(3﹣m)2m•2m
=﹣m2+3m.
②當<m<3時,如圖2所示.

設PE交AB于K,交AC于H.
因為BE=m,所以PK=PA=3﹣m,
又因為直線AC的解析式為y=﹣2x+6,
所以當x=m時,得y=6﹣2m,
所以點H(m,6﹣2m).
故S=S△PAH﹣S△PAK
=PA•PH﹣PA2
=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2
=m2﹣3m+
綜上所述,當0<m≤時,S=﹣m2+3m;當<m<3時,S=m2﹣3m+
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

已知二次函數y=x2+bx+c中,函數y與自變量x的部分對應值如下表:
x-101234
y1052125
(1)無論x取何值對應的函數值y都是正數;(2)當x>3時y隨x的增大而增大;(3)當x=5時,y=10.
以上說法正確的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經過A(﹣3.0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,已知等腰梯形ABCD的周長為48,面積為S,AB∥CD,∠ADC=60°,設AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當S取最大值時,等腰梯形ABCD的四個頂點都在⊙O上,點E和點F分別是AB和CD的中點,求⊙O的半徑R的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應的碟寬為   ;拋物線y=4x2對應的碟寬為   ;拋物線y=ax2(a>0)對應的碟寬為  ;拋物線y=a(x﹣2)2+3(a>0)對應的碟寬為  
(2)拋物線y=ax2﹣4ax﹣(a>0)對應的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應準蝶形記為Fn(n=1,2,3…),定義F1,F2,…,Fn為相似準蝶形,相應的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現將(2)中求得的拋物線記為y1,其對應的準蝶形記為F1
①求拋物線y2的表達式;
②若F1的碟高為h1,F2的碟高為h2,…Fn的碟高為hn,則hn=  ,Fn的碟寬有端點橫坐標為 2 ;F1,F2,…,Fn的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達式;若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y=x2﹣(m+n)x+mn(m>n)與x軸相交于A、B兩點(點A位于點B的右側),與y軸相交于點C.
(1)若m=2,n=1,求A、B兩點的坐標;
(2)若A、B兩點分別位于y軸的兩側,C點坐標是(0,﹣1),求∠ACB的大。
(3)若m=2,△ABC是等腰三角形,求n的值.
 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結論:①;②時,;③平行于x軸的直線與兩條拋物線有四個交點;④2AB=3AC.其中錯誤結論的個數是(   )

A.1      B.2      C.3           D.4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖是拋物線y=ax2+bx+c的一部分,其對稱軸為直線x=2,若其與x軸一交點為B(5,0),則由圖象可知,不等式ax2+bx+c>0的解集是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數關系的圖象大致是(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视