精英家教網 > 初中數學 > 題目詳情
(2013•包頭)如圖,點A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,則∠ADB=
28
28
度.
分析:根據垂徑定理可得點B是
AC
中點,由圓周角定理可得∠ADB=
1
2
∠BOC,繼而得出答案.
解答:解:∵OB⊥AC,
AB
=
BC
,
∴∠ADB=
1
2
∠BOC=28°.
故答案為:28.
點評:此題考查了圓周角定理,注意掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•包頭)如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.
(1)如圖①,當
CE
EB
=
1
3
時,求
S△CEF
S△CDF
的值;
(2)如圖②當DE平分∠CDB時,求證:AF=
2
OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=
1
2
BG.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•包頭)如圖,四邊形ABCD和四邊形AEFC是兩個矩形,點B在EF邊上,若矩形ABCD和矩形AEFC的面積分別是S1、S2的大小關系是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•包頭)如圖,一根長6
3
米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當木棒A端沿墻下滑至點A′時,B端沿地面向右滑行至點B′.
(1)求OB的長;
(2)當AA′=1米時,求BB′的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•包頭)如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG•AB=12,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视