精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線my=ax2﹣6ax+ca0)的頂點Ax軸上,并過點B0,1),直線ny=﹣x+x軸交于點D,與拋物線m的對稱軸l交于點F,過B點的直線BE與直線n相交于點E﹣77).

1)求拋物線m的解析式;

2Pl上的一個動點,若以B,EP為頂點的三角形的周長最小,求點P的坐標;

3)拋物線m上是否存在一動點Q,使以線段FQ為直徑的圓恰好經過點D?若存在,求點Q的坐標;若不存在,請說明理由.

【答案】(1y=x2x+1;(2)點P坐標為(3);(3)點Q坐標為(9,4)或(15,16).

【解析】試題分析:(1)拋物線頂點在x軸上則可得出頂點縱坐標為0,將解析式進行配方就可以求出a的值,繼而得出函數解析式;(2)作出B點關于l的對稱點B′,連接EB′l于點P,如圖所示,,三角形BEP為頂點的三角形的周長最小,再求出直線B′E的解析式,進而得出P點坐標;(3)先求出直線FD的解析式,結合以線段FQ為直徑的圓恰好經過點D這個條件,明確∠FDG=90°,得出直線DG解析式的k值與直線FD解析式的k值乘積為﹣1,利用D點坐標求出直線DG解析式,將點Q坐標用拋物線解析式表示后代入DG直線解析式可求出點Q坐標.

試題解析:(1拋物線y=ax2﹣6ax+ca0)的頂點Ax軸上

配方得y=ax﹣32﹣9a+1,則有﹣9a+1=0,解得a=

∴A點坐標為(3,0),拋物線m的解析式為y=x2x+1

2B關于對稱軸直線x=3的對稱點B′為(6,1

連接EB′l于點P,如圖所示

設直線EB′的解析式為y=kx+b,把(﹣7,7)(6,1)代入得

解得,

則函數解析式為y=﹣x+

x=3代入解得y=

P坐標為(3,);

3∵y=﹣x+x軸交于點D

D坐標為(7,0),

∵y=﹣x+與拋物線m的對稱軸l交于點F,

F坐標為(3,2),

求得FD的直線解析式為y=﹣x+,若以FQ為直徑的圓經過點D,可得∠FDQ=90°,則DQ的直線解析式的k值為2

DQ的直線解析式為y=2x+b,把(7,0)代入解得b=﹣14,則DQ的直線解析式為y=2x﹣14,

設點Q的坐標為(a,),把點Q代入y=2x﹣14

=2a﹣14

解得a1=9,a2=15

Q坐標為(9,4)或(1516).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:EO=FO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】因式分解:m2﹣4mn+4n2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知|x-y+2|+(x+y-2)2=0,則x2-y2的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】

如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都是m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的相同的小矩形,且m>n.(以上長度單位:cm)

(1)觀察圖形,可以發現代數式可以因式分解為

(2)若每塊小矩形的面積為10cm,四個正方形的面積和為58cm,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價 - 進價)×銷售量)

(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?

(2)通過市場調研,該商場決定在原計劃的基礎上,減少A種設備的購進數量,增加B種設備的購進數量,已知B種設備增加的數量是A種設備減少數量的1.5倍。若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數量至多減少多少套?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】分解因式b2(x﹣3)+b(x﹣3)的正確結果是( 。

A.(x﹣3)(b2+b)
B.b(x﹣3)(b+1)
C.(x﹣3)(b2﹣b)
D.b(x﹣3)(b﹣1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠1:∠2:∠3=236,且∠3比∠160°,則∠2=

A.10°B.60°C.45°D.80°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據調查結果繪制了兩幅不完整的統計圖.根據圖中提供的信息,解答下列問題:

(1)這次調查的學生共有多少名?

(2)請將條形統計圖補充完整,并在扇形統計圖中計算出“進取”所對應的圓心角的度數.

(3)如果要在這5個主題中任選兩個進行調查,根據(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视