【題目】如圖,正方形ABCD的邊長為4,M,N,P分別為AD,BC,CD的中點.現從點P觀察線段AB,當長度為1的線段l(圖中的黑粗線)以每秒1個單位長的速度沿線段MN從左向右運動時,l將阻擋部分觀察視線,在△PAB區域內形成盲區.設l的左端點從M點開始,運動時間為t秒(0≤t≤3).設△PAB區域內的盲區面積為y(平方單位).
(1)求y與t之間的函數關系式;
(2)請簡單概括y隨t的變化而變化的情況.
【答案】(1)當0≤t≤1時,y=3t;當1<t≤2時,y=3;當2<t≤3時,y=9-3t;(2)1秒內,y隨t的增大而增大;1秒到2秒,y的值不變;2秒到3秒,y隨t的增大而減小.
【解析】
(1)根據正方形的性質得AM=2,盲區為梯形,且上底為下底的一半,高為2,然后分段計算:當0≤t≤1時,梯形的上底為t,則下底為2t;當1<t≤2時,梯形的上底為1,下底為2;當2<t≤3時,梯形的上底為1-(t-2)=3-t,則下底為2(3-t),然后根據梯形的面積分別計算出三中情況下的梯形的面積即可;
(2)根據一次函數的性質求解.
解:(1)∵正方形ABCD的邊長為4,點M,N,P分別為AD,BC,CD的中點,∴AM=2,盲區為梯形,且上底為下底的一半,高為2,
當0≤t≤1時,y=(t+2t)·2=3t,
當1<t≤2時,y=(1+2)×2=3,
當2<t≤3時,y=[3-t+2(3-t)]·2=9-3t.
(2)1秒內,y隨t的增大而增大;1秒到2秒,y的值不變;2秒到3秒,y隨t的增大而減小.
科目:初中數學 來源: 題型:
【題目】布袋里有四個小球,球表面分別標有2、3、4、6四個數字,它們的材質、形狀、大小完全相同。從中隨機摸出一個小球記下數字為x,再從剩下的三個球中隨機摸出一個球記下數字為y,點A的坐標為(x,y).運用畫樹狀圖或列表的方法,寫出A點所有可能的坐標,并求出點A在反比例函數圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲開車從距離市
千米的
市出發去
市,乙從同一路線上的
市出發也去往
市,二人離
市的距離與行駛時間的函數關系如圖所示(
代表距離,
代表時間).
(1)市離
市的距離是 千米;
(2)甲的速度是 千米/時,乙的速度是 千米/時;
(3)甲比乙早幾小時到達市?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,則四邊形AEDF的周長是( )
A. 24 B. 28 C. 32 D. 36
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大學生創業團隊抓住商機,購進一批干果分裝成營養搭配合理的小包裝后出售,每袋成本3元.試銷期間發現每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數關系,部分數據如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數關系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以的直角邊
和斜邊
為邊向外作正方形
和正方形
,連結
、
、
.給出下列結論:
①;
②
③
④其中正確的是( )
A.②③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內切圓分別和BC、AC、AB切于點D、E、F,那么AF、BD、CE的長分別為( )
A. AF=4,BD=9,CE=5 B. AF=4,BD=5,CE=9
C. AF=5,BD=4,CE=9 D. AF=9,BD=4,CE=5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com