【題目】如圖,一次函數y=ax+b與反比例函數y=的圖象交于A、B兩點,點A坐標為(m,2),點B坐標為(﹣4,n),OA與x軸正半軸夾角的正切值為
,直線AB交y軸于點C,過C作y軸的垂線,交反比例函數圖象于點D,連接OD、BD.
(1)求一次函數與反比例函數的解析式;
(2)求四邊形OCBD的面積.
【答案】(1)y=x-1;反比例函數的解析式為 y=
,(2)18.
【解析】
試題(1)根據∠AOE的正切值求出點A的坐標,根據點A坐標求出反比例函數解析式,從而得出點B的坐標,然后根據點A、點B的坐標得出一次函數解析式;(2)首先求出點C和點D的坐標,然后將四邊形的面積轉化成△ODC和△BDC的面積和進行求解.
試題解析:(1)tan∠AOE=,OE=6,A(6,2),y=
的圖象過A(6,2),∴
,k=12,
∴反比例函數的解析式為 y=, ∵B(﹣4,n)在 y=
的圖象上, ∴ n=﹣3,B(﹣4,﹣3),
一次函數y=ax+b過A、B點,則解得:
∴一次函數解析式為y=x-1;
當x=0時,y=﹣1,C(0,﹣1), 當y=﹣1時,x=﹣12,D(﹣12,﹣1),
=
+
=12×1÷2+12×2÷2=6+12=18
科目:初中數學 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質量備受人們關注.我市某空氣質量監測站點檢測了該區域每天的空氣質量情況,統計了2013年1月份至4月份若干天的空氣質量情況,并繪制了如下兩幅不完整的統計圖.
請根據圖中信息,解答下列問題:
(1)統計圖共統計了 天的空氣質量情況;
(2)請將條形統計圖補充完整;空氣質量為“優”所在扇形的圓心角度數是 ;
(3)從小源所在環保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質量監測站點參觀,則恰好選到一名男同學和一名女同學的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.
(1)求∠BAC的度數;
(2)當點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數;
②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文明,源遠流長:中華漢字,寓意深廣,為了傳承優秀傳統文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發現所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數,總分100分)作為樣本進行整理,得到下列不完整的統計圖表:
成績x/分 | 頻數 | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請根據所給信息,解答下列問題:
(1)a=______,b=______;
(2)請補全頻數分布直方圖;
(3)這次比賽成績的中位數會落在_____________分數段;
(4)若成績在90分以上(包括90分)的為“優”等,則該校參加這次比賽的3000名學生中成績“優”等約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】江南農場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為菱形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點M.
(1)求證:CD與⊙O相切;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲和乙兩位同學想測量一下廣場中央的照明燈P的高度,如圖,當甲站在A處時,乙測得甲的影子長AD正好與他的身高AM相等,接著甲沿AC方向繼續向前走,走到點B處時,甲的影子剛好是線段AB,此時測得AB的長為1.2m.已知甲直立時的身高為1.8m,求照明燈的高CP的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com