【題目】在矩形ABCD中,AB=3,BC=2,以點A為旋轉中心,逆時針旋轉矩形ABCD,旋轉角為α(0°<α<180°),得到矩形AEFG,點B、點C、點D的對應點分別為點E、點F、點G.
(1)如圖①,當點E落在DC邊上時,直寫出線段EC的長度為 ;
(2)如圖②,當點E落在線段CF上時,AE與DC相交于點H,連接AC,
①求證:△ACD≌△CAE;
②直接寫出線段DH的長度為 .
(3)如圖③設點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉過程中,△BEP的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
【答案】(1) (2) ①證明見解析,②
;(3)存在,
.
【解析】
(1)根據勾股定理求出DE的長度,即可求解.
(2)①根據HL即可判定三角形全等.
②設
在Rt△ADH中根據勾股定理即可求解.
(3)如圖③中,連接PA,作BM⊥PE交PE的延長線于M.根據題意可得:PF=PG=,
則PA=PE=,S△PBE=
PEBM=
BM,當BM的值最大時,△PBE的面積最大,求出BM的最大值即可.
(1)
故答案為:
(2) ①證明:如圖②中,
∵當點E落在線段CF上,
∴∠AEC=∠ADC=90°,
在Rt△ADC和Rt△AEC中,
∴Rt△ACD≌Rt△CAE(HL);
②
(3)存在.
理由:如圖③中,連接PA,作BM⊥PE交PE的延長線于M.
由題意:PF=PG=,
∵AG=EF=2,∠G=∠F=90°,∴PA=PE=,
∴S△PBE=PEBM=
BM,
∴當BM的值最大時,△PBE的面積最大,
∵BM≤PB,PB≤AB+PA,
∴PB≤3+img src="http://thumb.zyjl.cn/questionBank/Upload/2020/06/09/06/2d6c918a/SYS202006090604111882361116_DA/SYS202006090604111882361116_DA.007.png" width="9" height="33" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />=,∴BM≤
,∴BM的最大值為
,此時點B、A、P三點共線,
∴△PBE的面積的最大值為.
科目:初中數學 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發,當其中一點到達端點時,另一點隨之停止運動.
(1)經過多長時間,四邊形PQCD是平行四邊形?
(2)經過多長時間,四邊形PQBA是矩形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一個可以自由轉動的轉盤被平均分成3個扇形,分別標有1,2,3三個數字.小王和小李各轉動一次轉盤為一次游戲,當每次轉盤停止后,指針所指扇形內的數為各自所得的數,一次游戲結束后得到一組數(若指針指在分界線時重轉).
(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現的所有結果;
(2)求每次游戲后得到的一組數恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中,每個小方格都是邊長為1的正方形,△ABC的三個頂點都在格點上,結合所給的平面直角坐標系解答下列問題:
(1)△ABC的面積為 ;
(2)將△ABC繞原點O 旋轉180°,畫出旋轉后的△A1B1C1;
(3)將△ABC向右平移4個單位長度,畫出平移后的△A2B2C2;
(4)△A1B1C1與△A2B2C2成中心對稱嗎?若是,請直接寫出對稱中心的坐標: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于點A,四邊形ABCD為正方形,P為射線BM上一動點,連結CP,將CP繞點C順時針方向旋轉90°得CE,連接BE,若AB=2,則BE的最小值為( )
A. +1B. 2
﹣1C. 3D. 4﹣
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每到春夏交替時節,雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統計圖.
治理楊絮一一您選哪一項?(單選)
A.減少楊樹新增面積,控制楊樹每年的栽種量
B.調整樹種結構,逐漸更換現有楊樹
C.選育無絮楊品種,并推廣種植
D.對雌性楊樹注射生物干擾素,避免產生飛絮
E.其他
根據以上統計圖,解答下列問題:
(1)本次接受調查的市民共有 人;
(2)扇形統計圖中,扇形E的圓心角度數是 ;
(3)請補全條形統計圖;
(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)同題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數.
小明想到一種方法,但是沒有解答完:
如圖2,過P作PE∥AB,∴∠APE+∠PAB=180°.
∴∠APE=180°-∠PAB=180°-130°=50°.
∵AB∥CD.∴PE∥CD.
…………
請你幫助小明完成剩余的解答.
(2)問題遷移:請你依據小明的思路,解答下面的問題:
如圖3,AD∥BC,點P在射線OM上運動,∠MDP=∠α,∠BCP=∠β.
①當點P在A、B兩點之間時,∠CPD,∠α,∠β之間有何數量關系?請說明理由.
②當點P在A、B兩點外側時(點P與點O不重合),請直接寫出∠CPD,∠α,∠β之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】星光廚具店購進電飯煲和電壓鍋兩種電器進行銷售其進價與售價如表
進價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,廚具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數量不大于電壓鍋的,請你通過計算判斷,如何進貨廚具店賺錢最多?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com