精英家教網 > 初中數學 > 題目詳情
如圖,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC邊上一點,作PE⊥AB于E,PD⊥AC于D,設BP=x,則PD+PE=( 。
A.B.C.D.
A

試題分析:由勾股定理得BC=5,
∵PE∥AC,PD∥AB
∴△CDP∽△CAB,△BPE∽△BCA
,
∴PD=,PE=,
∴PD+PE=+=+3
故選A.
點評:本題考查勾股定理,三角形相似的判定和性質,其中由相似列出比例式是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.

(1)如圖(1)當射線DN經過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.
(3)在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ACB=90°,CD是AB上的中點,過點B作BE⊥CD,垂足為E.
求證:△ABC∽△BCE.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,已知∠ACB=∠CBD=90°,AC=8,CB=2,要使圖中的兩個直角三角形相似,則BD的長應為(    ).
A.B.8C.2D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,D、E是AB的三等分點,DF∥EG∥BC,圖中三部分的面積分別為S1,S2,S3,則S1:S2:S3=( 。

A.1:2:3          B.1:2:4         C.1:3:5          D.2:3:4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

將一副三角板按如圖疊放,△ABC是等腰直角三角形,△BCD是有一個角為30°的直角三角形,則△AOB與△DCO的面積之比等于(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,EF是△ABC的中位線,將△AEF沿中線AD方向平移到△A1E1F1的位置,使E1F1與BC邊重合,已知△AEF的面積為7,則圖中陰影部分的面積為( 。
A.7B.14C.21D.28

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,矩形ABCD中,E是BC的中點,連接AE,過點E作EF⊥AE交DC于點F,連接AF.設=k,下列結論:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)當k=1時,△ABE∽△ADF,其中結論正確的是(  )
A.(1)(2)(3)B.(1)(3)C.(1)(2)D.(2)(3)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠ACD=90°,直線EF∥BD,交AB于點E,交AC于點G,交AD于點F.若SAEG=S四邊形EBCG,則=         

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视