【題目】如圖,在平行四邊形ABCD中,AB=10,BC=15,tan∠A=點P為AD邊上任意一點,連結PB,將PB繞點P逆時針旋轉90°得到線段PQ.若點Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉到PQ所掃過的面積____(結果保留π)
【答案】或
或
【解析】
分三種情況:點Q在直線AD上,點Q在直線CD上和點Q在直線BC上,分別求出PB的長度,然后利用扇形的面積公式即可求解.
①當點Q在直線AD上時,此時,如圖,
,
.
∵,
.
,
,
∴PB旋轉到PQ所掃過的面積為 ;
②當點Q在直線CD上時,此時,如圖,
過點B作交AD于點E,過點Q作
交AD的延長線于點F,
∵四邊形ABCD是平行四邊形,
∴ ,
.
,
.
,
.
在和
中,
,
.
由①知, ,
設,
則.
,
,
解得 ,
,
,
∴PB旋轉到PQ所掃過的面積為 ;
③當點Q在直線BC上時,此時,如圖,
過點B作交AD于點E,過點P作
交BC于點H,
∵四邊形ABCD是平行四邊形,
∴.
∵,
,
,
∴四邊形BGPH是平行四邊形.
∵ ,
∴四邊形BGPH是矩形,
∴ .
,
,
,
∴PB旋轉到PQ所掃過的面積為 ;
故答案為:或
或
.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=∠C.以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE與⊙O相切;
(2)延長DE交BA的延長線于點F,若AB=8,sinB=,求線段FA的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形.
(1)如圖1,將線段AC繞點A逆時針旋轉90°,得到AD,連接BD,∠BAC的平分線交BD于點E,連接CE.
①求∠AED的度數;
②用等式表示線段AE、CE、BD之間的數量關系(直接寫出結果).
(2)如圖2,將線段AC繞點A順時針旋轉90°,得到AD,連接BD,∠BAC的平分線交DB的延長線于點E,連接CE.
①依題意補全圖2;
②用等式表示線段AE、CE、BD之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,點D為BC邊的中點,以AD為直徑作⊙O,分別與AB,AC交于點E,F,過點E作EG⊥BC于G.
(1)求證:EG是⊙O的切線;
(2)若AF=6,⊙O的半徑為5,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線yx2bxc與直線y
x3分別交于x軸,y軸上的B,C兩點,設該拋物線與x軸的另一個交點為A,頂點為D,連接CD交x軸于點E.
(1)求該拋物線的函數表達式;
(2)求該拋物線的對稱軸和D點坐標;
(3)點F,G是對稱軸上兩個動點,且FG=2,點F在點G的上方,請直接寫出四邊形ACFG的周長的最小值;
(4)連接BD,若P在y軸上,且∠PBC=∠DBA+∠DCB,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生對“防溺水”安全知識的掌握情況,從全校名學生中隨機抽取部分學生進行測試,并將測試成績(百分制,得分均為整數)進行統計分析,繪制了如下不完整的頻數表和頻數直方圖.
被抽取的部分學生安全知識測試成績頻數表
組別 | 成績(分) | 頻數(人) | 頻率 |
| |||
| |||
| |||
| |||
|
由圖表中給出的信息回答下列問題:
表中的
;抽取部分學生的成績的中位數在 組;
把上面的頻數直方圖補充完整;
如果成績達到
分以上(包括
分)為優秀,請估計該校
名學生中成績優秀的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,E是邊AD上的一個動點(與點A,D不重合),連接EO并延長,交BC于點F,連接BE,DF.下列說法:
① 對于任意的點E,四邊形BEDF都是平行四邊形;
② 當∠ABC>90°時,至少存在一個點E,使得四邊形BEDF是矩形;
③ 當AB<AD時,至少存在一個點E,使得是四邊形BEDF是菱形;
④ 當∠ADB=45°時,至少存在一個點E,使得是四邊形BEDF是正方形.
所有正確說法的序號是:_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠AOB=120°,點P為射線OA上一動點(不與點O重合),點C為∠AOB內部一點,連接CP,將線段CP繞點C順時針旋轉60°得到線段CQ,且點Q恰好落在射線OB上,不與點O重合.
(1)依據題意補全圖1;
(2)用等式表示∠CPO與∠CQO的數量關系,并證明;
(3)連接OC,寫出一個OC的值,使得對于任意點P,總有OP+OQ=4,并證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com