【題目】(1)已知:如圖1,點A、D、C、B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:AE∥BF.
(2)如圖2所示,△ABC的頂點分別為A(﹣4,5),B(﹣3,2),C(4,﹣1)
①作出△ABC關于x軸對稱的圖形△A1B1C1;
②用三角板作出△ABC的AB邊上的高CH.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的一邊AB在x軸上,∠ABC=90°,點C(4,8)在第一象限內,AC與y軸交于點E,拋物線y=+bx+c經過A、B兩點,與y軸交于點D(0,﹣6).
(1)請直接寫出拋物線的表達式;
(2)求ED的長;
(3)點P是x軸下方拋物線上一動點,設點P的橫坐標為m,△PAC的面積為S,試求出S與m的函數關系式;
(4)若點M是x軸上一點(不與點A重合),拋物線上是否存在點N,使∠CAN=∠MAN.若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】莆田元宵節從農歷正月初六持續到正月廿九,堪稱全國最長的元宵節,其中江東桔塔和延寧蔗塔十分引人關注.元宵節前夕,江東村和延寧村置辦元宵節所需的桔子和甘蔗中,桔子重量比甘蔗重量少100千克.若市場上每千克桔子的價格是甘蔗的1.5倍,所采購桔子和甘蔗的費用都是1200元,求每千克桔子和甘蔗分別是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖中是拋物線形拱橋,點P處有一照明燈,水面OA寬4 m,以O為原點,OA所在直線為x軸建立平面直角坐標系,已知點P的坐標為(3, ).
(1)點P與水面的距離是________m;
(2)求這條拋物線的表達式;
(3)當水面上升1 m后,水面的寬變為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長線上取一點P,以AP為直角邊,點P為直角頂點,在射線CB上方作等腰 Rt
, 過點D作DE⊥CB,垂足為點E.
(1) 依題意補全圖形;
(2) 求證: AC=PE;
(3) 連接DB,并延長交AC的延長線于點F,用等式表示線段CF與AC的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個批發店銷售同一種蘋果,在甲批發店,不論一次購買數量是多少,價格均為6元/kg.在乙批發店,一次購買數量不超過50kg時,價格均為7元/kg;一次性購買超過50kg時,其中有50kg的價格仍為7元/kg,超過50kg的部分價格為5元/kg.設小王在同一個批發店一次購買蘋果的數量為kg(
>0)
(1)根據題意填表:a= b=
一次購買數量(kg) | 30 | 50 | 150 | … |
甲批發店花費(元) | 180 | 300 | 900 | … |
乙批發店花費(元) | a | 350 | b | … |
(2)設在甲批發店花費元,在乙批發店花費
元,分別求
,
關于
的函數解析式;
(3)若小王在同一個批發店一次性購買蘋果花費了360元,則他在甲、乙兩個批發店中批發,哪個批發店購買數量多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=﹣x+b的圖象過點A(0,3),點p是該直線上的一個動點,過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,在四邊形PMON上分別截。篜C=
MP,MB=
OM,OE=
ON,ND=
NP.
(1)b= ;
(2)求證:四邊形BCDE是平行四邊形;
(3)在直線y=﹣x+b上是否存在這樣的點P,使四邊形BCDE為正方形?若存在,請求出所有符合的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關系如何?試證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com