精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在平面直角坐標系中,直線與坐標軸交于A,B兩點,以AB為斜邊在第一象限內作等腰直角三角形ABC,點C為直角頂點,連接OC.

(1)直接寫出= ;

(2)請你過點CCEy軸于E點,試探究OB+OACE的數量關系,并證明你的結論;

(3)若點MAB的中點,點NOC的中點,求MN的值;

(4)如圖2,將線段AB繞點B沿順時針方向旋轉至BD,且ODAD,延長DO交直線于點P,求點P的坐標.

【答案】1 4;(2OB+OA=2CE;見解析;(3MN=;(4P,).

【解析】

(1)x=0,求出y的值,令y=0,求出x的值,即可得出OA,OB的長,根據三角形面積公式即可求出結果;

2)過點CCFx軸,垂足為點F,易證CEB≌△CFA與四邊形CEOF是正方形,從而得AF=BECE=BE=OF,由OB=OE-BE,AO=OF+AF可得結論;

3)求出C點坐標,利用中點坐標公式求出點M,N的坐標,進而用兩點間的距離公式求解即可得出結論;

4)先判斷出點BAQ的中點,進而求出Q的坐標,即可求出DP的解析式,聯立成方程組求解即可得出結論.

1)∵直線y=-x+2交坐標軸于A,B兩點,

x=0,則y=2,令y=0,則x=4,

BO=2,AO=4,

=

2)作CFx軸于F,作CEy軸于E,如圖,

∴∠BFC=AEC=90°

∵∠EOF=90°,

∴四邊形OECF是矩形,

CF=OE,CE=OF,∠ECF=90°,

∵∠ACB=90°

∴∠BCF=ACE

BC=AC,

∴△CFB≌△CEA,

CF=CEAF=BE,

∴四邊形OECF是正方形,

OE=OF=CE=CF

OB=OE-BE,OA=OF+AF

OB+OA=OE+OF=2CE;

3)由(2)得CE=3,

OE=3,

OF=3

C3,3);

M是線段AB的中點,而A40),B0,2),

M2,1),

同理:N,),

MN=

3)如圖②延長AB,DP相交于Q

由旋轉知,BD=AB

∴∠BAD=BDA,

ADDP,

∴∠ADP=90°,

∴∠BDA+BDQ=90°,∠BAD+AQD=90°,

∴∠AQD=BDQ,∴BD=BQ,

BQ=AB

∴點BAQ的中點,

A40),B02),

Q-4,4),

∴直線DP的解析式為y=-x①,

∵直線DO交直線y=x+5②于P點,

聯立①②解得,x=-,y=,

P-).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某自行車廠一周計劃生產輛自行車,平均每天生產輛,由于各種原因實際每天生產量與計劃量相比有出入,下表是某周的生產情況(超產為正,減產為負);

星期

增減

根據記錄可知前三天共生產________輛;

產量最多的一天比產量最少的一天多生產________輛;

該廠實行計件工資制,每輛車元,超額完成任務每輛獎元,少生產一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為弘揚中華優秀傳統文化,某中學在2019年元旦前夕,由校團委組織全校學生開展了一次書法比賽為了表彰書法比賽中的獲獎學生,計劃購買鋼筆30,毛筆20,共需1070,其中每支毛筆比鋼筆貴6.

(1)求鋼筆和毛筆的單價各為多少元?

(2)后來校團委決定調整設獎方案,擴大表彰面,需要購買上面的兩種筆共60(每種筆的單價不變)張老師做完預算后,向財務處王老師說:“我這次買這兩種筆需要支領1322王老師核算了一下,:“如果你用這些錢只買這兩種筆,那么賬肯定算錯了.”請你用學過的方程知識解釋:王老師為什么說張老師用這些錢只買兩種筆的賬算錯了.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BEAD,連接CE并延長交AD于點F,連接AE,過B點作BGAE于點G,延長BGAD于點H.在下列結論中:①AHDF;②∠AEF45°;③S四邊形EFHGSDEF+SAGH;④BH平分∠ABE.其中不正確的結論有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形AOBC中,OB=4,OA=3,分別以OB,OA所在直線為x軸、y軸建立平面直角坐標系,F是BC邊上的點,過F點的反比例函數y=(k>0)的圖象與AC邊交于點E.若將△CEF沿EF翻折后,點C恰好落在OB上的點D處,則點F的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一般地,任何一個無限循環小數都可以寫成分數形式,如0.0.777…,它的循環節有一位,設0. x,由0. 0777…,可知,10x7.777…,所以10xx7,得x.于是,得0. ,再如0.0.737373…,它的循環節有兩位,設0.x,由0.0.737373…可知,100x73.7373…,所以100xx73.解方程得x.于是,得0. ,類比上述方法,無限循環小數0. 3化為分數形式為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形的邊BC,CD上.

(1)證明:BE=CF.

(2)當點E,F分別在邊BC,CD上移動時(△AEF保持為正三角形),請探究四邊形AECF的面積是否發生變化?若不變,求出這個定值;如果變化,求出其最大值.

(3)在(2)的情況下,請探究△CEF的面積是否發生變化?若不變,求出這個定值;如果變化,求出其最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙P的圓心坐標是(5,a)(a>5),半徑為5,函數y=x的圖象被⊙P截得的弦AB的長為8,則a的值是( )

A. 8 B. 5+3 C. 5 D. 5+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,DAB上一點,以CD為直徑的⊙OBC于點E,連接AECD于點P,交⊙O于點F,連接DF,CAE=ADF

1)判斷AB與⊙O的位置關系,并說明理由;

2)若PFPC=12,AF=5,求CP的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视