【題目】如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關于x的-元二次方程-x2+mx-t=0 (t為實數)在l<x<3的范圍內有解,則t的取值范圍是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
科目:初中數學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,
,
,…,
的n
個正方形依次放入△ABC中,則第n個正方形的邊長
_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD中,F是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當GB平分∠CGE時,BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線和
相交于點
,
,在射線
上取一點
,使
,過點
作
于點
,
是線段
上的一個動點(不與點
重合),過點
作
的垂線交射線
于點
.
(1)確定點的位置,在線段
上任取一點
,根據題意,補全圖形;
(2)設cm,
cm,探究函數
隨自變量
的變化而變化的規律.
①通過取點、畫圖、測量,得到了與
的幾組對應值,如下表:
| ||||||
|
(要求:補全表格,相關數值保留一位小數)
②)建立平面直角坐標系,描出以補全后的表中各對應值為坐標的點,畫出該函數的圖象;
③結合畫出的函數圖象,解決問題:當為
斜邊
上的中線時,
的長度約為_____cm(結果保留一位小數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解市民對全市創文工作的滿意程度,某中學數學興趣小組在全市甲、乙兩個區內進行了調查統計,將調查結果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統計圖.
請結合圖中信息,解決下列問題:
(1)求此次調查中接受調查的人數.
(2)求此次調查中結果為非常滿意的人數.
(3)興趣小組準備從調查結果為不滿意的4位市民中隨機選擇2位進行回訪,已知4位市民中有2位來自甲區,另2位來自乙區,請用列表或用畫樹狀圖的方法求出選擇的市民均來自甲區的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數;
(2)求C'B的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一元二次方程x2+2x-3=0的兩根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點C,B的橫坐標,且此拋物線過點A(3,6)
(1)求此拋物線的函數解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC交于點Q,求點P,Q的坐標.
(3)在x軸上是否存在以動點M,使MQ+MA有最小值,若存在求出點M的坐標和最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點,連結CP,將CP繞點C順時針方向旋轉90°得CE,連結BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com