【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點O作EF∥AB交BC于F,交AC于E,過點O作OD⊥BC于D,下列四個結論:
①∠AOB=90°+ ∠C;
②AE+BF=EF;
③當∠C=90°時,E,F分別是AC,BC的中點;
④若OD=a,CE+CF=2b,則S△CEF=ab.
其中正確的是( )
A.①②
B.③④
C.①②④
D.①③④
【答案】C
【解析】解:∵∠BAC和∠ABC的平分線相交于點O,
∴∠OBA= ∠CBA,∠OAB=
∠CAB,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=180°﹣ ∠CBA﹣
∠CAB
=180°﹣ (180°﹣∠C)
=90°+ ∠C,①正確;
∵EF∥AB,
∴∠FOB=∠ABO,又∠ABO=∠FBO,
∴∠FOB=∠FBO,
∴FO=FB,
同理EO=EA,
∴AE+BF=EF,②正確;
當∠C=90°時,AE+BF=EF<CF+CE,
∴E,F分別是AC,BC的中點,③錯誤;
作OH⊥AC于H,
∵∠BAC和∠ABC的平分線相交于點O,
∴點O在∠C的平分線上,
∴OD=OH,
∴S△CEF= ×CF×OD
×CE×OH=ab,④正確.
故選:C.
【考點精析】本題主要考查了平行線的性質和角平分線的性質定理的相關知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】解方程:我們已經學習了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認為適當的方法解這個方程
① ②
③ ④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學規定學生的學期體育總評成績滿分為100分,其中平均成績占20%,期中考試成績占30%,期末考試成績占50%,小彤的三項成績(百分制)依次為95,90,88,則小彤這學期的體育總評成績為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“綜合與實踐”學習活動準備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數個單位長度.
(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】操作探究:已知在紙面上有一數軸(如圖所示), 操作一:
(1)折疊紙面,使表示的1點與﹣1表示的點重合,則﹣3表示的點與表示的點重合; 操作二:
(2)折疊紙面,使﹣1表示的點與3表示的點重合,回答以下問題: ①5表示的點與數表示的點重合;
②若數軸上A、B兩點之間距離為11,(A在B的左側),且A、B兩點經折疊后重合,求A、B兩點表示的數是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k<0)與反比例函數的圖象相交于A、B兩點,一次函數的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數的解析式;
(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com