精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知矩形ABCD,AB6,BC10,E,F分別是AB,BC的中點,AFDE相交于I,與BD相交于H,則四邊形BEIH的面積為(  )

A.6B.7C.8D.9

【答案】B

【解析】

延長AFDCQ點,由矩形的性質得出CDAB6,ABCD,ADBC,得出1,△AEI∽△QDE,因此CQABCD6,△AEI的面積:△QDI的面積=116,根據三角形的面積公式即可得出結果.

延長AFDCQ點,如圖所示:

E,F分別是AB,BC的中點,

AEAB3,BFCFBC5

∵四邊形ABCD是矩形,

CDAB6,ABCD,ADBC

1,△AEI∽△QDI,

CQABCD6,△AEI的面積:△QDI的面積=(2,

AD10

∴△AEIAE邊上的高=2,

∴△AEI的面積=×3×23,

∵△ABF的面積=×5×615,

ADBC

∴△BFH∽△DAH

,

∴△BFH的面積=×2×55

∴四邊形BEIH的面積=△ABF的面積﹣△AEI的面積﹣△BFH的面積=15357

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數的解析式是y=x2﹣2x﹣3.

(1)與y軸的交點坐標是   ,頂點坐標是   

(2)在坐標系中利用描點法畫出此拋物線;

x

y

(3)結合圖象回答:當﹣2<x<2時,函數值y的取值范圍是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲車從地出發勻速駛向地,到達地后,立即按原路原速返回地;乙車從地出發沿相同路線勻速駛向地,出發小時后,乙車因故障在途中停車小時,然后繼續按原速駛向地,乙車在行駛過程中的速度是千米/時,甲車比乙車早小時到達地,兩車距各自出發地的路程千米與甲車行駛時間小時之間的函數關系如圖所示,請結合圖象信息解答下列問題:

1)寫出甲車行駛的速度,并直接寫出圖中括號內正確的數__ __

2)求甲車從地返回地的過程中,的函數關系式(不需要寫出自變量的取值范圍)

3)直接寫出甲車出發多少小時,兩車恰好相距千米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖△ABC中,∠C=90°,AB=5,BC=3,S、Q兩點同時分別從A、C出發,點S以每秒2個單位的速度沿著AC向點C運動,點Q以每秒1個單位的速度沿著CB向點B運動.當其中一點到達終點時,另一點也隨之停止運動

(1)求幾秒時SQ的長為2

(2)求幾秒時,△SQC的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個斜拋物體的水平運動距離為xm),對應的高度記為hm),且滿足hax2+bx2a(其中a0).已知當x0時,h2;當x10時,h2

1)求h關于x的函數表達式;

2)求斜拋物體的最大高度和達到最大高度時的水平距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm∠B=30°,點P從點B出發,以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發以2cm/s的速度沿B→A→C運動到點C停止.若△BPQ的面積為y運動時間為xs),則下列圖象中能大致反映yx之間關系的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,圓O的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線

1)判斷直線l與圓O的關系,并說明理由;

2)若的平分線BFAD于點F,求證:

3)在(2)的條件下,若,,求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為迎接2019年的到來,銅陵萬達廣場某商鋪將進價為40元的禮盒按50元售出時,能賣出500盒.商鋪發現這種禮盒每漲價0.1元時,其銷量就減少1盒.

1)若該商鋪計劃賺得9000元的利潤,售價應定為多少元?

2)物價部門規定:該禮盒售價不得超過進價的1.5倍.問:此時禮盒售價定為多少元,才能使得商鋪的獲利最大?且最大利潤為多少元?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视