【題目】如圖,在一塊長為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設道路寬為x m,根據題意可列出方程為______________________________.
【答案】(22-x)(17-x)=300(或x2-39x+74=0)
【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個長方形,根據長方形的面積公式列方程.設道路的寬應為x米,由題意有(22﹣x)(17﹣x)=300,故答案為:(22﹣x)(17﹣x)=300.
考點:由實際問題抽象出一元二次方程.
【題型】填空題
【結束】
17
【題目】x=1是關于x的一元二次方程x2+mx﹣5=0的一個根,則此方程的另一個根是 .
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠C+∠D=210°,E、F 分別是 AD,BC 上的點,將四邊形 CDEF 沿直線 EF 翻折,得到四邊形 C′D′EF, C′F 交 AD 于點 G,若△EFG 有兩個角相等,則∠EFG=______ °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同,正常水位時,大孔水面寬度AB=20m,頂點M距水面6m(即MO=6m),小孔頂點N距水面4.5m(即NC=4.5m),當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是( )
A.四邊形AEDF是平行四邊形
B.若∠BAC=90°,則四邊形AEDF是矩形
C.若AD平分∠BAC,則四邊形AEDF是矩形
D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某住宅小區在施工過程中留下了一塊空地(圖中的四邊形ABCD),經測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形嗎?為什么?
(2)小區為美化環境,欲在空地上鋪草坪,已知草坪每平方米80元,試問鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列結論:①AD是∠BAC的平分線;②若∠B=30°,則DA=DB;③AB:AC=2:1;④點D在AB的垂直平分線上.一定成立的個數為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F為BC中點,連接AE.
(1)直接寫出∠BAE的度數為 ;
(2)判斷AF與CE的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】猜想與證明:小強想證明下面的問題:“有兩個角(圖中的和
)相等的三角形是等腰三角形”.但他不小心將圖弄臟了,只能看見圖中的
和邊
.
(1)請問:他能夠把圖恢復成原來的樣子嗎?若能,請你幫他寫出至少兩種以上恢復的方法并在備用圖上恢復原來的樣子.
(2)你能夠證明這樣的三角形是等腰三角形嗎?(至少用兩種方法證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某地,人們發現在一定溫度下某種蟋蟀叫的次數與溫度之間有如下的竟是關系:
(1)在這個變化過程中,自變量是 ,因變量是 ;
(2)在當地溫度每增加
,這種蟋蟀
叫的次數
是怎樣變化的?
(3)這種蟋蟀叫的次數
(次)與當地溫度
之間的關系為 ;
(4)當這種蟋蟀叫的次數
時,求當時該地的溫度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com