【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
(3)當點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?
【答案】(1)證明見解析,(2)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.證明見解析,(3)當點O在邊AC上運動到AC中點時,若∠ACB=90°,四邊形AECF為正方形.證明見解析.
【解析】
(1)根據平行線的性質以及角平分線的性質得出∠1=∠2,∠3=∠4,進而得出答案;
(2)根據AO=CO,EO=FO可得四邊形AECF平行四邊形,再證明∠ECF=90°利用矩形的判定得出即可;
(3)當點O在邊AC上運動到AC中點時,若∠ACB=90°,四邊形AECF為正方形,首先證明為矩形,再證明AC⊥EF根據對角線互相垂直的矩形是正方形可得結論.
(1)證明:∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.
證明:如圖,當O為AC的中點時,AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
分別平分
∠ECF=90°,
∴平行四邊形AECF是矩形.
(3)當點O在邊AC上運動到AC中點時,若∠ACB=90°,四邊形AECF為正方形.
證明:如圖,由(2)可得點O在邊AC上運動到AC中點時平行四邊形AECF是矩形,
∵∠ACB=90°,
∴∠2=45°,
∵平行四邊形AECF是矩形,
∴EO=CO,
∴∠1=∠2=45°,
∴∠MOC=90°,
∴AC⊥EF,
∴四邊形AECF是正方形.
科目:初中數學 來源: 題型:
【題目】如圖,ABCD是一張邊長為4cm的正方形紙片,E,F分別為AB,CD的中點,沿過點D的折痕將A角翻折,使得點A落在EF上的點A′處折痕交AE于點G,則∠ADG=____°EG=___cm .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共180件其進價和售價如表:(注:獲利=售價進價)
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點、
分別在射線
、
上運動(不與點
重合).
(1)如圖1,若,
、
的平分線交于點
,求
的度數;
(2)如圖2,若,
的外角
、
的平分線交于點
,則
等于______度(用含字母
的代數式表示);
(3)如圖3,若,
是
的平分線,
的反向延長線與
的平分線交于點
.試問:隨著點
、
的運動,
的大小會變嗎?如果不會,求
的度數;如果會,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
點A、B在數軸上分別表示實數a、b,A、B兩點之間的距離表示為∣AB∣.
當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當A、B兩點都不在原點時,如圖2,點A、B都在原點的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如圖3,當點A、B都在原點的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如圖4,當點A、B在原點的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列問題:
(1)數軸上表示1和6的兩點之間的距離是 ,數軸上表示2和-3的兩點之間的距離是 ;
(2)數軸上若點A表示的數是x,點B表示的數是-4,則點A和B之間的距離是 ,若∣AB∣=3,那么x為 ;
(3)當x是 時,代數式;
(4)若點A表示的數,點B與點A的距離是10,且點B在點A的右側,動點P、Q同時從A、B出發沿數軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒
個單位長度,求運動幾秒后,點Q與點P 相距1個單位?(請寫出必要的求解過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點的“
值”定義如下:若點
為圓上任意一點,線段
長度的最大值與最小值之差即為點
的“
值”,記為
.特別的,當點
,
重合時,線段
的長度為0.
當⊙的半徑為2時:
(1)若點,
,則
_________,
_________;
(2)若在直線上存在點
,使得
,求出點
的橫坐標;
(3)直線與
軸,
軸分別交于點
,
.若線段
上存在點
,使得
,請你直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k≠0)與反比例函數y=(m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數和反比例函數的圖象分別交于點B、C.
(1)求一次函數與反比例函數的解析式;
(2)根據圖象回答,x在什么范圍內,一次函數的值大于反比例函數的值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯結PD、AD.
(1)求△ABC的面積;
(2)設PB=x,△APD的面積為y,求y關于x的函數關系式,并寫出定義域;
(3)如果△APD是直角三角形,求PB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com