【題目】如圖, 是
的直徑,
切
于點
,
,點
在
上,
交
于
,
,則
的長是( )
A.B.
C.
D.
【答案】A
【解析】
連接AE、BD、DC,根據題意求得BE=6,CE=2,AE=10,根據圓周角定理求得∠BDC=90°,進而求得∠ABD=∠DCE,∠DAB=∠DEC,然后證得△DCE∽△DAB,得出比例式,得出AD=4DE,然后根據勾股定理即可求得.
解:連接AE、BD、DC,
∵AB與⊙O相切于點B,
∴∠ABC=90°,
∵BC=8,BE=3CE,
∴CE=2,BE=6,
∵AB=8,
∴由勾股定理得:AE==10,
∵BC是直徑,
∴∠BDC=90°,
∵∠ADE=90°,
∴∠ABD+∠CBD=90°,∠DCE+∠CBD=90°,
∴∠ABD=∠DCE,
∵∠ADE=∠ABE=90°,
∴∠DAB+∠DEB=360°-90°-90°=180°,
∵∠DEC+∠DEB=180°,
∴∠DEC=∠DAB,
∴△DCE∽△DAB,
∴ ,
∴AD=4DE,
在RT△ADE中,AE2=AD2+DE2,
∴102=(4DE)2+DE2,
∴DE=,
∴AD=,
故選:A.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與y軸交于點C,與反比例函數y=的圖象交于A,B兩點,過點B作BE⊥x軸于點E,已知A點坐標是(2,4),BE=2.
(1)求一次函數與反比例函數的表達式;
(2)連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖象交x軸于A(-1, 0),B(4, 0)兩點,交y軸于點C.動點M從點A出發,以每秒2個單位長度的速度沿AB方向運動,過點M作MN⊥x軸交直線BC于點N,交拋物線于點D,連接AC.設運動的時間為t秒.
(1)求二次函數的表達式;
(2)連接BD,當時,求△DNB的面積;
(3)在直線MN上存在一點P,當△PBC是以∠BPC為直角的等腰直角三角形時,直接寫出此時點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,FO⊥AB,垂足為點O,連接AF并延長交⊙O于點D,連接OD交BC于點E,∠B=30°,FO=2.
(1)求AC的長度;
(2)求圖中陰影部分的面積.(計算結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經過點B.
(1)求該拋物線的函數表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內,連接AM、BM,設點M的橫坐標為m,△ABM的面積為S,求S與m的函數表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應的位置記為點M′.寫出點M′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以正方形的頂點
為坐標原點,直線
為
軸建立直角坐標系,對角線
與
相交于點
,
為
上一點,點
坐標為
,則點
繞點
順時針旋轉90°得到的對應點
的坐標是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解某校學生對以下四個電視節目:最強大腦
、
中國詩詞大會
、
朗讀者
、
出彩中國人
的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節目,根據調查結果,繪制了如下兩幅不完整的統計圖.
請你根據圖中所提供的信息,完成下列問題:
本次調查的學生人數為______;
在扇形統計圖中,A部分所占圓心角的度數為______;
請將條形統計圖補充完整;
若該校共有3000名學生,估計該校最喜愛
中國詩詞大會
的學生有多少名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形是平行四邊形,
,若
,
的長是關于
的一元二次方程
的兩個根,且
.
(1)直接寫出:______,
______;
(2)若點為
軸正半軸上的點,且
;
①求經過,
兩點的直線解析式;
②求證:.
(3)若點在平面直角坐標系內,則在直線
上是否存在點
,使以
,
,
,
為頂點的四邊形為菱形?若存在,直接寫出
點的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com