【題目】在同一直角坐標系中,函數y=mx+m和函數y=mx2+2x+2(m是常數,且m≠0)的圖象可能是( 。
A. B.
C.
D.
【答案】D
【解析】
關鍵是m的正負的確定,對于二次函數y=ax2+bx+c,當a>0時,開口向上;當a<0時,開口向下.對稱軸為x=-,與y軸的交點坐標為(0,c).
A、由函數y=mx+m的圖象可知m<0,則函數y=mx2+2x+2開口方向朝下,對稱軸為x=-=-
=-
>0,則對稱軸應在y軸右側,故A選項錯誤;
B、由函數y=mx+m的圖象可知m<0,則函數y=mx2+2x+2開口方向朝下,與圖象不符,故B選項錯誤;
C、由函數y=mx+m的圖象可知m>0,則函數y=mx2+2x+2開口方向朝上,對稱軸為x=-=-
=-
<0,則對稱軸應在y軸左側,與圖象不符,故C選項錯誤;
D、由函數y=mx+m的圖象可知m<0,則函數y=mx2+2x+2開口方向朝下,對稱軸為x=-=-
=-
>0,則對稱軸應在y軸右側,與圖象符合,故D選項正確.
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠C=30°,點D是線段BC上的動點,將線段AD繞點A順時針旋轉60°至AD',連接BD'.若AB=2cm,則BD'的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;
(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在下列n×n的正方形網格中,請按圖形的規律,探索以下問題:
(1)第④個圖形中陰影部分小正方形的個數為 ;
(2)是否存在陰影部分小正方形的個數是整個圖形中小正方形個數的?如果存在,是第幾個圖形;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】臨近端午節,某食品店每天賣出300只粽子,賣出一只粽子的利潤為1元.經調查發現,零售單價每降0.1元,每天可多賣出100只粽子.為了使每天獲得的利潤更多,該店決定把零售單價下降m(0<m<1)元,
(1)零售單價降價后,每只利潤為 元,該店每天可售出 只粽子.
(2)在不考慮其他因素的條件下,當零售單價下降多少元時,才能使該店每天獲取的利潤是420元,且賣出的粽子更多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個批發商銷售成本為20元/千克的某產品,根據物價部門規定:該產品每千克售價不得超過90元,在銷售過程中發現的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(操作體驗)
如圖①,已知線段AB和直線l,用直尺和圓規在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長為半徑作⊙O,交l于;
所以圖中即為所求的點.(1)在圖②中,連接
,說明∠
=30°
(方法遷移)
(2)如圖③,用直尺和圓規在矩形ABCD內作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).
(深入探究)
(3)已知矩形ABCD,BC=2.AB=m,P為AD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為________.
(4)已知矩形ABCD,AB=3,BC=2,P為矩形ABCD內一點,且∠BPC=135°,若點P繞點A逆時針旋轉90°到點Q,則PQ的最小值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將線段AB繞點A逆時針旋轉60°得AC,連接BC,作△ABC的外接圓⊙O,點P為劣弧上的一個動點,弦AB、CP相交于點D.
(1)求∠APB的大;
(2)當點P運動到何處時,PD⊥AB?并求此時CD:CP的值;
(3)在點P運動過程中,比較PC與AP+PB的大小關系,并對結論給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,則EF的最小值為( )
A. 2B. 2.4C. 2.5D. 2.6
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com