【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CG,BG,BD,DG,下列結論:
①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若=
,則3S△BDG=13S△DGF .
其中正確的結論是 寫所有正確結論的序號)
【答案】①③④
【解析】∵AE平分∠BAD,
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,∠AEB=45°,
∵AB=CD,
∴BE=CD,
故①正確;
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF是等腰直角三角形,
∵點G為EF的中點,
∴CG=EG,∠FCG=45°,
∴∠BEG=∠DCG=135°,
在△DCG和△BEG中,,
∴△DCG≌△BEG(SAS).
∴∠BGE=∠DGC,
∵∠BGE<∠AEB,
∴∠DGC=∠BGE<45°,
∵∠CGF=90°,
∴∠DGF<135°,
故②錯誤;
∵∠BGE=∠DGC,
∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,
故③正確;
∵=
,
∴設AB=2a,AD=3a,
∵△DCG≌△BEG,
∵∠BGE=∠DGC,BG=DG,
∵∠EGC=90°,
∴∠BGD=90°,
∵BD==
a,
∴BG=DG=a,
∴S△BDG=×
a×
a=
a2
∴3S△BDG=a2 ,
過G作GM⊥CF于M,
∵CE=CF=BC﹣BE=BC﹣AB=a,
∴GM=CF=
a,
∴S△DGF=DFGM=
×3a×
a=
a2 ,
∴13S△DGF=a2 ,
∴3S△BDG=13S△DGF ,
故④正確.
故答案為:①③④.
先求出∠BAE=45°,判斷出△ABE是等腰直角三角形,根據等腰直角三角形的性質可得AB=BE,∠AEB=45°,從而得到BE=CD,故①正確;
再求出△CEF是等腰直角三角形,根據等腰直角三角形的性質可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“邊角邊”證明△DCG≌△BEG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②錯誤;
由于∠BGE=∠DGC,得到∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正確;
由△BGD是等腰直角三角形得到BD==
a , 求得S△BDG , 過G作GM⊥CF于M,求得S△DGF , 進而得出答案.
科目:初中數學 來源: 題型:
【題目】某調查機構將今年溫州市民最關注的熱點話題分為消費、教育、環保、反腐及其它共五類.根據最近一次隨機調查的相關數據,繪制的統計圖表如下:
根據以上信息解答下列問題:
(1)本次共調查人 ,請在補全條形統計圖并標出相應數據 ;
(2)若溫州市約有900萬人口,請你估計最關注教育問題的人數約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現準備從這四人中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(列樹狀圖或列表說明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為節約水資源,制定了新的居民用水收費標準.按照新標準,用戶每月繳納的水費y(元)與每月用水量x(m3)之間的關系如圖所示.
(1)求y關于x的函數解析式;
(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費79.8元,則該用戶二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx﹣3a經過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,動點P從點B出發以1厘米/秒的速度沿BC方向運動,動點Q從點C出發以2厘米/秒的速度沿CD方向運動,P,Q兩點同時出發,當點Q到達點D時停止運動,點P也隨之停止,設運動時間為t秒(t>0).
(1)求線段CD的長。
(2)t為何值時,線段PQ將四邊形ABCD的面積分為1:2兩部分?
(3)伴隨P,Q兩點的運動,線段PQ的垂直平分線為l.
①t為何值時,l經過點C?
②求當l經過點D時t的值,并求出此時刻線段PQ的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)計算:﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣÷
,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖象與反比例函數的圖象交于第二、四象限內的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標是(m,﹣4),連接AO,AO=5,sin∠AOC= .
(1)求反比例函數的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c開口向上且經過點(1,1),雙曲線y= 經過點(a,bc),給出下列結論:①bc>0;②b+c>0;③b,c是關于x的一元二次方程x2+(a﹣1)x+
=0的兩個實數根;④a﹣b﹣c≥3.其中正確結論是(填寫序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com