精英家教網 > 初中數學 > 題目詳情

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.

(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高.(結果保留根號)

【答案】
(1)

解:∵坡度為i=1:2,AC=4m,

∴BC=4×2=8m.


(2)

解:作DS⊥BC,垂足為S,且與AB相交于H.

∵∠DGH=∠BSH,∠DHG=∠BHS,

∴∠GDH=∠SBH,

=

∵DG=EF=2m,

∴GH=1m,

∴DH= = m,BH=BF+FH=3.5+(2.5﹣1)=5m,

設HS=xm,則BS=2xm,

∴x2+(2x)2=52,

∴x= m

∴DS= + =2 m.


【解析】(1)根據坡度定義直接解答即可;(2)作DS⊥BC,垂足為S,且與AB相交于H.證出∠GDH=∠SBH,根據 = ,得到GH=1m,利用勾股定理求出DH的長,然后求出BH=5m,進而求出HS,然后得到DS.
【考點精析】本題主要考查了關于坡度坡角問題的相關知識點,需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖:△ABC中,AB=AC,內切圓⊙O與邊BC、AB分別切于點D、E、F,若∠C=30°,CE=2 ,則AC=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數與反比例函數的圖像交于A(1,12)和B(6,2)兩點.點P是線段AB上一動點(不與點A和B重合),過P點分別作x、y軸的垂線PC、PD交反比例函數圖像于點M、N,則四邊形PMON面積的最大值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是不倒翁的正視圖,不倒翁的圓形臉恰好與帽子邊沿PA、PB分別相切于點A、B,不倒翁的鼻尖正好是圓心O,若∠OAB=25°,求∠APB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點F在邊AC上,并且CF=1,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形OABC有兩邊在坐標軸的正半軸上,如圖所示,雙曲線y= 與邊AB、BC分別交于D、E兩點,OE交雙曲線y= 于點G,若DG∥OA,OA=3,則CE的長為(
A.
B.1.5
C.
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一條直線上依次有A、B、C三個海島,某海巡船從A島出發沿直線勻速經B 島駛向C島,執行海巡任務,最終達到C島.設該海巡船行駛x(h)后,與B港的距離為y(km),y與x的函數關系如圖所示.
(1)填空:A、C兩港口間的距離為km,a=
(2)求y與x的函數關系式,并請解釋圖中點P的坐標所表示的實際意義;
(3)在B島有一不間斷發射信號的信號發射臺,發射的信號覆蓋半徑為15km,求該海巡船能接受到該信號的時間有多長?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點重合于對角線BD上一點P、EF、GH分別是折痕(如圖2).設AE=x(0<x<2),給出下列判斷:
①當x=1時,點P是正方形ABCD的中心;
②當x= 時,EF+GH>AC;
③當0<x<2時,六邊形AEFCHG面積的最大值是3;
④當0<x<2時,六邊形AEFCHG周長的值不變.
其中正確的選項是( )

A.①③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,二次函數y=ax2+bx的圖象過點A(﹣1,3),頂點B的橫坐標為1.

(1)求這個二次函數的表達式;
(2)點P在該二次函數的圖象上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)如圖3,一次函數y=kx(k>0)的圖象與該二次函數的圖象交于O、C兩點,點T為該二次函數圖象上位于直線OC下方的動點,過點T作直線TM⊥OC,垂足為點M,且M在線段OC上(不與O、C重合),過點T作直線TN∥y軸交OC于點N.若在點T運動的過程中, 為常數,試確定k的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视