【題目】如圖為二次函數y=ax2+bx+c的圖象,此圖象與x軸的交點坐標分別為(﹣1,0)、(3,0).下列說法正確的個數是( 。ac<0;②a+b+c>0;③方程ax2+bx+c=0的根為x1=﹣1,x2=3;④當x>1時,y隨著x的增大而增大.
A. 1B. 2C. 3D. 4
科目:初中數學 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點,P是⊙O上一動點,求PM的最大值.
問題解決
(3)如圖③所示,AB、AC、BC是某新區的三條規劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對的圓心角為60°.新區管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規劃道路PE、EF和FP.為了快捷環保和節約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).
圖① 圖② 圖③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 在矩形ABCD中,AB=3,AD=4,點P為AB邊上的動點(P與A、B不重合),將△BCP沿CP翻折,點B的對應點B1在矩形外,PB1交AD于E,CB1交AD于點F.
(1)如圖1,求證:△APE∽△DFC;
(2)如圖1,如果EF=PE,求BP的長;
(3)如圖2,連接BB′交AD于點Q,EQ:QF=8:5,求tan∠PCB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,BO、CO是角平分線.
(1)∠ABC=50°,∠ACB=60°,求∠BOC的度數,并說明理由.
(2)題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數.
(3)若∠A=n°,求∠BOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)
(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)
(測傾器的高度忽略不計,參考數據:tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=ax+b與反比例函數y=的圖象交于A、B兩點,點A坐標為(m,2),點B坐標為(﹣4,n),OA與x軸正半軸夾角的正切值為
,直線AB交y軸于點C,過C作y軸的垂線,交反比例函數圖象于點D,連接OD、BD.
(1)求一次函數與反比例函數的解析式;
(2)求四邊形OCBD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,BC邊上有一點E,BE=4,將紙片折疊,使A點與E點重合,折痕MN交AD于M點,則線段AM的長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C的坐標為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B的對應點E落在坐標平面內,當△ADE是等腰直角三角形時,點E的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2015南通)如圖,在ABCD中,點E,F分別在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求證:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com