精英家教網 > 初中數學 > 題目詳情

【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數關系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10m,則最多可以連續繪制幾個這樣的拋物線型圖案?

【答案】
(1)解:根據題意得:B( , ),C( , ),

把B,C代入y=ax2+bx得

解得: ,

∴拋物線的函數關系式為y=﹣x2+2x;

∴圖案最高點到地面的距離= =1


(2)解:令y=0,即﹣x2+2x=0,

∴x1=0,x2=2,

∴10÷2=5,

∴最多可以連續繪制5個這樣的拋物線型圖案


【解析】(1)根據題意求得B( ),C( , ),解方程組求得拋物線的函數關系式為y=﹣x2+2x;根據拋物線的頂點坐標公式得到結果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,在△ABC中,BP、CP分別是∠ABC和∠ACB的角平分線,∠BPC=134°,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內的交點R,與x軸、y軸的交點分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將ADE折疊使點D恰好落在BC邊上的點F,求CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,,BDAC邊上的中線,過點C于點E,過點ABD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.

求證:

求證:四邊形BDFG為菱形;

,求四邊形BDFG的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結論是 . (寫出正確命題的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD10°,∠B∠D25°,∠EAB120°,試求∠DFB∠DGB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠AOB=a外有一點P,畫點P關于直線OA的對稱點P′,再作點P′關于直線OB的對稱點P″.

(1)試猜想∠POP″a的大小關系,并說出你的理由.

(2)當P為∠AOB 內一點或∠AOB邊上一點時,上述結論是否成立?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的3個頂點都在5×5的網格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是平方單位(結果保留π).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视