【題目】李華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15.(sin15°=0.259,cos15°=0.966,tan15°=0.268,結果精確到0.1m)
(1)求李華此時與地面的垂直距離CD的值;
(2)李華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45,求樓房AB的高度.
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為( 。
A. (,-1) B. (2,﹣1) C. (1,-
) D. (﹣1,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車間同時開始加工一批服裝.從開始加工到加工完這批服裝甲車間工作了9小時,乙車間在中途停工一段時間維修設備,然后按停工前的工作效率繼續加工,直到與甲車間同時完成這批服裝的加工任務為止.設甲、乙兩車間各自加工服裝的數量為y(件).甲車間加工的時間為x(時),y與x之間的函數圖象如圖所示,則下列結論錯誤的是( )
A.甲車間每小時加工服裝80件
B.這批服裝的總件數為1140件
C.乙車間每小時加工服裝為60件
D.乙車間維修設備用了4小時
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形內接于
,對角線
于
,連接
交
于點
.
(1)如圖1,求證:;
(2)如圖2,作于
,交
于
,連接
,求證:
;
(3)在(2)的條件下,連接,若
,
,
,
,求
長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀與計算,請閱讀以下材料,并完成相應的問題.
角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則=
.下面是這個定理的部分證明過程.
證明:如圖2,過C作CE∥DA.交BA的延長線于E.…
任務:(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,則△ABD的周長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數式m2+m+4的最小值;
(2)求代數式4﹣x2+2x的最大值;
(3)某居民小區要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是二次函數y=ax2+bx+c(a≠0)的圖象,對稱軸為直線x=2,則下列結論正確的有( )個.
①ax2+bx+c=0(a≠0)有兩個不相等的實數根
②3a﹣c>0
③a﹣b+c<0
④(0,y1)、(4,y2)在此二次函數的圖象上,則y1<y2
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝超市購進單價為30元的童裝若干件,物價部門規定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發現:當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設銷售單價為x元,平均月銷售量為y件.
(1)求出y與x的函數關系式,并寫出自變量x的取值范圍.
(2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?
(3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com