精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,AB是⊙O的直徑,點C是 的中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E

(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.

【答案】
(1)證明:

連接OD,如圖,

∵C是 的中點,

∴∠BOC=∠COD=60°,

∴∠AOD=60°,且OA=OD,

∴△AOD為等邊三角形,

∴∠EAB=∠COB,

∴OC∥AE,

∴∠OCE+∠AEC=180°,

∵CE⊥AE,

∴∠OCE=180°﹣90°=90°,即OC⊥EC,

∵OC為圓的半徑,

∴CE為圓的切線


(2)解:

四邊形AOCD是菱形,理由如下:

由(1)可知△AOD和△COD均為等邊三角形,

∴AD=AO=OC=CD,

∴四邊形AOCD為菱形.


【解析】(1)連接OD,可證明△AOD為等邊三角形,可得到∠EAO=∠COB,可證明OC∥AE,可證得結論;(2)利用△OCD和△AOD都是等邊三角形可證得結論.
【考點精析】通過靈活運用菱形的判定方法和切線的判定定理,掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問題:

(1)寫出電流I與電阻R之間的函數解析式.
(2)如果一個用電器的電阻為5Ω,其允許通過的最大電流是1A,那么這個用電器接在這個閉合電路中,會不會燒毀?說明理由.
(3)若允許的電流不超過4A時,那么電阻R的取值應該控制在什么范圍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=﹣x2+2x+m.
(1)如果二次函數的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數圖象的對稱軸交于點P,求點P的坐標.

(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于點E.在ABC外有一點F,使FAAE,FCBC.

(1)求證:BE=CF;

(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:MEBC;DE=DN.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值: ,其中x的值從不等式組的整數解中選取.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,四邊形ABCD,AD∥BCAB=4,BC=6,CD=5,AD=3.

求:四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC與△CDE均是等邊三角形,點BC、E在同一條直線上,AEBD交于點O,AECD交于點G,ACBD交于點F,連接OC、FG,則下列結論:AE=BD;②AG=BF;③FGBE;④∠BOC=∠EOC.其中正確結論的個數為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=x2+bx+c過點(2,﹣2)和(﹣1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近年來,共享單車逐漸成為高校學生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機支付就可隨取隨用的共享單車.某高校為了解本校學生出行使用共享單車的情況,隨機調查了某天部分出行學生使用共享單車的情況,并整理成如下統計表.

使用次數

0

1

2

3

4

5

人數

11

15

23

28

18

5

(1)這天部分出行學生使用共享單車次數的中位數是   ,眾數是   ,該中位數的意義是   

(2)這天部分出行學生平均每人使用共享單車約多少次?(結果保留整數)

(3)若該校某天有1500名學生出行,請你估計這天使用共享單車次數在3次以上(含3次)的學生有多少人?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视