【題目】如圖,在平行四邊形ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)當∠A=50°,∠BOD=100°時,判斷四邊形BECD的形狀,并說明理由.
【答案】(1)證明見解析;(2)四邊形BECD是矩形.
【解析】
(1)由AAS證明△BOE≌△COD,得出OE=OD,即可得出結論;
(2)結論:四邊形BECD是矩形.由平行四邊形的性質得出∠BCD=∠A=50°,由三角形的外角性質求出∠ODC=∠BCD,得出OC=OD,證出DE=BC,即可得出結論.
(1)證明:∵四邊形ABCD為平行四邊形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O為BC的中點,
∴BO=CO,
在△BOE和△COD中,
,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四邊形BECD是平行四邊形;
(2)解:若∠A=50°,∠BOD=100°時,四邊形BECD是矩形.
理由如下:∵四邊形ABCD是平行四邊形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°﹣50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四邊形BECD是平行四邊形,
∴四邊形BECD是矩形;
科目:初中數學 來源: 題型:
【題目】如圖,E,F分別是ABCD的邊AD,BC上的點,EF=6,∠DEF=60,將四邊形EFCD沿EF翻折,得到 ,
’交BC于點G,則△GEF的周長為( )
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級全體同學參加了某項捐款活動,隨機抽查了部分同學捐款的情況統計如圖所示
(1)本次共抽查學生____人,并將條形圖補充完整;
(2)捐款金額的眾數是_____,平均數是_____;
(3)在八年級700名學生中,捐款20元及以上(含20元)的學生估計有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)2014年益陽市的地區生產總值(第一、二、三產業的增加值之和)已進入千億元俱樂部,如圖表示2014年益陽市第一、二、三產業增加值的部分情況,請根據圖中提供的信息解答下列問題
(1)2014年益陽市的地區生產總值為多少億元?
(2)請將條形統計圖中第二產業部分補充完整;
(3)求扇形統計圖中第二產業對應的扇形的圓心角度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應點A'恰好落在BC的垂直平分線上時,折痕EF的長為__________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有8筐白菜,以每筐25千克為標準,超過的千克數記作正數,不足的千克數記作負數,稱后的紀錄如下:
回答下列問題:
(1)這8筐白菜中最接近標準重量的這筐白菜重__________千克;
(2)與標準重量比較,8筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.6元,則出售這8筐白菜可賣多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點A,B,AB=2,∠OAB=45°
(1)求一次函數的解析式;
(2)如果在第二象限內有一點C(a,);試用含有a的代數式表示四邊形ABCO的面積,并求出當△ABC的面積與△ABO的面積相等時a的值;
(3)在x軸上,是否存在點P,使△PAB為等腰三角形?若存在,請直接寫出所有符合條件的點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,B,C三點在數軸上,點A表示的數為-10,點B表示的數為14,點C到點A和點B之間的距離相等.
(1)求A,B兩點之間的距離;
(2)求C點對應的數;
(3)甲、乙分別從A,B兩點同時相向運動,甲的速度是1個單位長度/s,乙的速度是2個單位長度/s,求相遇點D對應的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD為半徑的⊙C與以AB為半徑的⊙B相交于點E、F,且點E在BD上,聯結EF交BC于點G.
(1)設BC與⊙C相交于點M,當BM=AD時,求⊙B的半徑;
(2)設BC=x,EF=y,求y關于x的函數關系式,并寫出它的定義域;
(3)當BC=10時,點P為平面內一點,若⊙P與⊙C相交于點D、E,且以A、E、P、D為頂點的四邊形是梯形,請直接寫出⊙P的面積.(結果保留π)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com