精英家教網 > 初中數學 > 題目詳情

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數關系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

【答案】A
【解析】解:此題在讀懂題意的基礎上,分兩種情況討論:
當x≤4時,y=6×8﹣(x2x)=﹣2x2+48,此時函數的圖象為拋物線的一部分,它的最上點拋物線的頂點(0,48),最下點為(4,16);
當4<x≤6時,點E停留在B點處,故y=48﹣8x=﹣8x+48,此時函數的圖象為直線y=﹣8x+48的一部分,它的最上點可以為(4,16),它的最下點為(6,0).
結合四個選項的圖象知選A項.
故選:A.
重點考查學生的閱讀理解能力、分析研究能力.在解答時要注意先總結出函數的解析式,由解析式結合其取值范圍判斷,不要只靠感覺.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,△ABC的面積為84,BC=21,現將△ABC沿直線BC向右平移a(0<a<21)個單位到△DEF的位置.

(1)BC邊上的高;

(2)AB=10,

①求線段DF的長;

②連結AE,當△ABE時等腰三角形時,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經過點C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將含45°角的三角板的直角頂點R放在直線l上,分別過兩銳角的頂點M,N作l的垂線,垂足分別為P、Q,
(1)如圖1,觀察圖1可知:與NQ相等的線段是 , 與∠NPQ相等的角是

(2)直角△ABC中,∠B=90°,在AB邊上任取一點D,連接CD,分別以AC,DC為邊作正方形ACEF和正方形CDGH,如圖2,過E,H分別作BC所在直線的垂線,垂足分別為K,L.試探究EK與HL之間的數量關系,并證明你的結論.

(3)直角△ABC中,∠B=90°,在AB邊上任取一點D,連接CD,分別以AC,DC為邊作矩形ACEF和矩形CDGH,連接EH交BC所在的直線于點T,如圖3,如果AC=kCE,CD=kCH,試探究TE與TH之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A,C的坐標分別為A(-4,5),C(-1,3).

(1)請在如圖所示的網格內作出x軸、y軸;

(2)請作出ABC關于y軸對稱的A1B1C1;

(3)寫出點B1的坐標并求出A1B1C1的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】意大利著名數學家斐波那契在研究兔子繁殖問題時,發現有這樣一組數:1,1,2,3,5,8,13,…,其中從第三個數起,每一個數都等于它前面兩個數的和.現以這組數中的各個數作為正方形的長度構造一組正方形(如下圖),再分別依次從左到右取2個,3個,4個,5個正方形拼成如下長方形并記為①,②,③,④,相應長方形的周長如下表所示:

若按此規律繼續作長方形,則序號為⑧的長方形周長是( )

A. 288 B. 178 C. 28 D. 110

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④SABG= SFGH . 其中正確的是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結果保留根號)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视