【題目】如圖,菱形ABCD中,∠BAD=60°,AC與BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE,分別交AC、AD于點F、G,連接OG,則下列結論:①OG=AB;②圖中與△EGD全等的三角形共有5個;③以點A、B、D、E為項點的四邊形是菱形;④S四邊形ODGF=S△ABF.其中正確的結論是( )
A. ①③B. ①③④C. ①②③D. ②②④
【答案】A
【解析】
由AAS證明△ABG≌△DEG,得出AG=DG,證出OG是△ACD的中位線,得出OG= CD=
AB,①正確;先證明四邊形ABDE是平行四邊形,證出△ABD、△BCD是等邊三角形,得出AB=BD=AD,因此OD=AG,得出四邊形ABDE是菱形,③正確;由菱形的性質得得出△ABG≌△BDG≌△DEG,由SAS證明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正確;證出OG是△ABD的中位線,得出OG//AB,OG=
AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性質和面積關系得出S四邊形ODGF=S△ABF;④不正確;即可得出結果.
解:四邊形ABCD是菱形,
在△ABG和△DEG中,
∴△ABG≌△DEG(AAS),
∴.AG=DG,
∴OG是△ACD的中位線,
∴OG=CD=
AB,①正確;
∵AB//CE,AB=DE,
∴四邊形ABDE是平行四邊形,
∴∠BCD=∠BAD=60°,
∴△ABD、△BCD是等邊三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四邊形ABDE是菱形,③正確;
∴AD⊥BE,
由菱形的性質得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
∴△ABG≌△DCO
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,則②不正確。
∵OB=OD,AG=DG,
∴OG是△ABD的中位線,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,
∴△AFG的面積=△OGF的面積的2倍,
又∵△GOD的面積=△AOG的面積=△BOG的面積,
∴ S四邊形ODGF=S△ABF;④不正確;
故答案為:A.
科目:初中數學 來源: 題型:
【題目】下面兩個多位數1248624…… ,6248624…… ,都是按照如下方法得到的:將第一位數字乘以2,若積為一位數,將其寫在第2位上,若積為兩位數,則將其個位數字寫在第2位.對第2位數字再進行如上操作得到第3位數字……,后面的每一位數字都是由前一位數字進行如上操作得到的.當第1位數字是3時,仍按如上操作得到一個多位數,則這個多位數前100位的所有數字之和是( )
A. 495 B. 497 C. 501 D. 503
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的面積為3,且AB=AC,現將△ABC沿CA方向平移CA長度得到△EFA.
(1)求四邊形CEFB的面積;
(2)試判斷AF與BE的位置關系,并說明理由;
(3)若∠BEC=15°,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,觀察數軸,請回答:
(1)點C與點D的距離為______ ,點B與點D的距離為______ ;
(2)點B與點E的距離為______ ,點A與點C的距離為______ ;
發現:在數軸上,如果點M與點N分別表示數m,n,則他們之間的距離可表示為 ______(用m,n表示)
(3)利用發現的結論解決下列問題: 數軸上表示x的點P與B之間的距離是1,則 x 的值是______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若甲、乙兩人同時從某地出發,沿著同一個方向行走到同一個目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的時間以a(km/h)的速度行走,另一半的時間以b(km/h)的速度行走(a≠b),則先到達目的地的是( )
A. 甲B. 乙
C. 同時到達D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形的頂點
在坐標原點,頂點
分別在
軸,
軸的正半軸上,
,
為邊
的中點,
是邊
上的一個動點,當
的周長最小時,點
的坐標為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將矩形ABCD繞點B順時針旋轉得到矩形A1BC1D1,點A、C、D的對應點分別為A1、C1、D1
(1)當點A1落在AC上時
①如圖1,若∠CAB=60°,求證:四邊形ABD1C為平行四邊形;
②如圖2,AD1交CB于點O.若∠CAB≠60°,求證:DO=AO;
(2)如圖3,當A1D1過點C時.若BC=5,CD=3,直接寫出A1A的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC、DC分別交于點G,F,H為CG的中點,連接DE,EH,DH,FH.下列結論:
①EG=DF;②∠AEH+∠ADH=180 ;③△EHF≌△DHC;④若,則3S△EDH=13S△DHC,其中結論正確的有___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com